PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microseismicity based short term rockburst prediction using non linear support vector machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microseismic (MS) monitoring is a short-term rockburst prediction technique that foretells the source, time and damage scale inside a rock mass during the rock fracturing process; however, due to the complex underground environment and mechanism of rockburst it is always hard to reliably predict the damage scale (severity) of rockburst manually; therefore, this paper introduces machine learning (ML) approach using nonlinear support vector machine (Nonlinear-SVM) to predict the short-term rockburst. Six indicators, cumulative number of events (N), cumulative seismic energy (E), cumulative apparent volume(V), event rate (NR), seismic energy rate (ER) and apparent volume rate (VR), are selected as an input indices for Nonlinear-SVM which is trained and tested with randomly selected 85 and 22 samples of rockburst cases, respectively, collected from different literature. The constructed model was employed to predict the short-term rockburst severity. After data standardisation, cross-validation and hyperparameter optimisation, the prediction accuracy reached 86% for the test sample. The predicted rockburst result truly matches the actual situation with few misclassifcations. Therefore, the proposed method has potential value for the short-term rockburst prediction task.
Czasopismo
Rocznik
Strony
1717--1736
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
  • Key Laboratory of Ministry of Education for Efcient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 10083, China
  • Key Laboratory of Ministry of Education for Efcient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 10083, China
  • Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
Bibliografia
  • 1. Baltz R, Hucke A (2008) Rockburst prevention in the german coal industry. Paper presented at: 27th, International Conference on Ground Control in Mining; 2008; Morgantown, W VA. Dept. of Mining Engineering, College of Engineering and Mineral Resources, West Virginia University
  • 2. Boser B, Guyon I, Vapnik V (1996) A training algorithm for optimal margin classifier. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory. 5
  • 3. Brauner GJcp (1994) Rockbursts in coal mines and their prevention
  • 4. Cai M (2013) Principles of rock support in burst– prone ground. Tunn Undergr Space Technol 36:46–56
  • 5. Chen B– R, Feng X– T, Li Q– P, Luo R– Z, Li S (2015) Rock burst intensity classification based on the radiated energy with damage intensity at jinping ii hydropower station, china. Rock Mech Rock Eng 48(1):289–303
  • 6. Cortes C, Vapnik V (1995) Support– vector networks. Mach Learn 20(3):273–297
  • 7. Cramer D (2003) Fundamental statistics for social research: Step– by– step calculations and computer techniques using spss for windows. Routledge
  • 8. Cramer D, Howitt DL. 2004. The sage dictionary of statistics: A practical resource for students in the social sciences. Sage.
  • 9. Doane D, Seward L (2011) Measuring skewness: A forgotten statistic? J Stat Educ. 19:871
  • 10. Dong L, Li X (2013) A microseismic/acoustic emission source location method using arrival times of ps waves for unknown velocity system. Int J Distrib Sensor Netw 9:307
  • 11. Duan K, Keerthi SS (2005) Which is the best multiclass SVM method? An empirical study. Multiple Classifier Syst 3541:278–285
  • 12. Oza NC, Polikar R, Kittler J, Roli F (eds) (2005) Which is the best multiclass svm method? An empirical study. multiple classifier systems. Springer
  • 13. Fajklewicz Z (2006) Rock burst forecasting and genetic research in coal mines by microgravity method. Geophys Prospect 31:748–765
  • 14. Feng G– L, Chen B– R, Xiao Y– X, Jiang Q, Li P– X, Zheng H, Zhang W (2022) Microseismic characteristics of rockburst development in deep tbm tunnels with alternating soft–hard strata and application to rockburst warning: a case study of the neelum–jhelum hydropower project. Tunn Undergr Space Technol 122:104398
  • 15. Feng G– L, Feng X– T, Chen B– R, Xiao Y– X, Jiang Q (2015) Sectional velocity model for microseismic source location in tunnels. Tunn Undergr Space Technol 45:73–83
  • 16. Feng G, Feng X– T, Chen B– r, Yaxun X, Yu Y (2014) A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng 48:2061
  • 17. Feng G, Feng X– T, Zhao ZN, Chen BR, Yaxun X, Liu GF. 2013. Rockburst risk analysis based on microseismic monitoring in deep– buried tunnel with tbm excavation. Rock Characterisation, Modelling and Engineering Design Methods – Proceedings of the 3rd ISRM SINOROCK 2013 Symposium.793–798.
  • 18. Feng G, Xia G, Chen B, Xiao Y, Zhou R (2019) A method for rockburst prediction in the deep tunnels of hydropower stations based on the monitored microseismicity and an optimized probabilistic neural network model. Sustainability 11:3212
  • 19. Feng X– T, Liu J, Chen B, Xiao Y, Feng G, Zhang F (2017) Monitoring, warning, and control of rockburst in deep metal mines. Engineering 3(4):538–545
  • 20. Feng X– T, Yu Y, Feng G– L, Xiao Y– X, Chen B– r, Jiang Q (2016) Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep, hard rock tunnels. Tunn Undergr Space Technol 51:98–107
  • 21. Feng X, Chen B, Li S, Zhang C, Xiao Y, Feng G, Zhou H, Qiu S, Zhao Z, Yu Y et al (2012) Studies on the evolution process of rockbursts in deep tunnels. J Rock Mech Geotech Eng 4(4):289–295
  • 22. Glazer S (2016) Mine seismology: data analysis and interpretation. Springer, Cham
  • 23. Li X, Mao H, Li B, Xu N (2020) Dynamic early warning of rockburst using microseismic multi– parameters based on bayesian network. Eng Sci Technol, Int J 24:871
  • 24. Liang W, Sari A, Zhao G, McKinnon SD, Wu H (2020) Short– term rockburst risk prediction using ensemble learning methods. Nat Hazards 104(2):1923–1946
  • 25. Liang W, Sari YA, Zhao G, McKinnon S, Wu H (2021) Probability estimates of short– term rockburst risk with ensemble classifiers. Rock Mech Rock Eng 54:1814
  • 26. Liu G– F, Jiang Q, Feng G, Chen D– F, Chen B– R, Zhao Z– N (2021) Microseismicity– based method for the dynamic estimation of the potential rockburst scale during tunnel excavation. Bull Eng Geol Env 80:1–24
  • 27. Liu J– p, Feng X– t, Li Y– h, Xu S– d, Sheng Y (2013) Studies on temporal and spatial variation of microseismic activities in a deep metal mine. Int J Rock Mech Min Sci 60:171–179
  • 28. Mark C (2016) Coal bursts in the deep longwall mines of the united states. Int J Coal Sci Technol 3(1):1–9
  • 29. Mendecki A (1997) Seismic monitoring in mines. Springer
  • 30. Mendecki A, Lynch R, Malovichko D (2022) Routine micro– seismic monitoring in mines. Springer
  • 31. Mohd Razali N, Yap B (2011) Power comparisons of shapiro– wilk, kolmogorov– smirnov, lilliefors and anderson– darling tests. J Stat Model Anal 2:81
  • 32. Park HM. 2008. Univariate analysis and normality test using sas, stata, and spss.
  • 33. Pearson’s correlation coefficient. 2008. In: Kirch W, editor. Encyclopedia of public health. Dordrecht: Springer Netherlands. p. 1090– 1091
  • 34. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2012) Scikit– learn: machine learning in python. J Mach Learn Res 12:641
  • 35. Peng Q, Qian AG, Xiao Y. 2010. Research on prediction system for rockburst based on artificial intelligence application methods. Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition). 42:18–24.
  • 36. Potvin Y, Hudyma M, Jewell R. 2000. Rockburst and seismic activity in underground australian mines– an introduction to a new research project.
  • 37. Pu Y, Apel DB, Liu V, Mitri H (2019) Machine learning methods for rockburst prediction– state– of– the– art review. Int J Min Sci Technol 29(4):565–570
  • 38. Scruby CBJJoPESI. 1986. An introduction to acoustic emission. 20:946–953.
  • 39. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611
  • 40. Sa W, HaganCao Ca. PCACA (2016) Advances in rock– support and geotechnical engineering. Elsevier
  • 41. Xiating F, Binrui C, Chuanqing Z, Shaojun L, Shiyong W (2013) Mechanism, warning and dynamic control of rockburst development process. Science Press
  • 42. Xue R, Liang Z, Xu N, Dong L (2020) Rockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoring. Int J Rock Mech Min Sci 126:104174
  • 43. Yaxun X, Feng X– T, Li S, Feng G, Yu Y (2016) Rock mass failure mechanisms during the evolution process of rockbursts in tunnels. Int J Rock Mech Min Sci 83:174–181
  • 44. Yin X, Liu Q, Pan Y, Huang X (2021) A novel tree– based algorithm for real– time prediction of rockburst risk using field microseismic monitoring. Environ Earth Sci 80:156
  • 45. Zhao H, Chen B, Zhu C (2021) Decision tree model for rockburst prediction based on microseismic monitoring. Adv Civil Eng 2021:8818052
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd9aa315-0944-40f8-9c08-96de510196c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.