PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental dose rate determination using a passive dosimeter: Techniques and workflow for α-Al2O3:C chips

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In situ dosimetry (active, passive dosimeters) provides high accuracy by determining environmental dose rates directly in the field. Passive dosimeters, such as α-Al2O3:C, are of particular interest for sites with desired minimum disturbance (e.g., archaeological sites). Here, we present a comprehensive approach obtaining the environmental cosmic and γ-dose rate using α-Al2O3:C chips. Our procedure consists of (1) homemade field containers, (2) a homemade bleaching box, (3) a rapid measurement sequence and (4) software based on R to process the measurement results. Our validation steps include reproducibility, irradiation time correction, cross-talk evaluation and source calibration. We further simulate the effect of the container against the infinite matrix dose rate, resulting in attenuation of ca. 6%. Our measurement design uses a lexsyg SMART luminescence reader equipped with green LEDs. The irradiation is carried out under the closed β-source. The minimum dose that can be determined was estimated with ca. 10 μGy. However, we also show that for the equipment used, an irradiation time correction of ca. 2.6 s is needed and irradiation cross-talk should be taken into account. The suggested procedure is cross-checked with four reference sites at Clermont-Ferrand showing a good γ-dose rate for three out of the four sites. Finally, an application example, including needed analytical steps, is presented for dosimeters buried at the archaeological site of the Sierra de Atapuerca (Spain).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
56--67
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
autor
  • Institut de Recherche sur les Archéomatériaux, UMR 5060 CNRS - Université Bordeaux Montaigne, Centre de Recherche en Physique Appliquée à l'Archéologie (CRP2A), Maison de l'Archéologie, 33607 Pessac cedex, France
Bibliografia
  • 1. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas J.J, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F.W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M.G, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcher-niaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J.P, Wenaus T, Williams D.C, Wright D, Yamada T, Yoshida H and Zschiesche D, 2003. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506: 250–303.
  • 2. Aguirre E and Carbonell E, 2001. Early human expansions into Eurasia: The Atapuerca evidence. Quaternary International 75(1): 11–18.
  • 3. Aitken MJ, 1985. Thermoluminescence dating. Academic Press.
  • 4. Akselrod MS, Kortov VS, Kravetsky DJ and Gotlib VI, 1990. Highly Sensitive Thermoluminescent Anion-Defective Alpha-Al203:C Single Crystal Detectors. Radiation Protection Dosimetry32: 15–20.
  • 5. Akselrod MS, Kortov VS and Gorelova EA, 1993. Preparation and Properties of α-Al2O3:C. Radiation Protection Dosimetry 47: 159–164.
  • 6. Akselrod MS, Lucas AC, Polf JC and McKeever SWS, 1998. Optically stimulated luminescence of Al2O3. Radiation Measurements 29: 391–399.
  • 7. Allison J, 2007. Facilities and Methods: Geant4 – A Simulation Toolkit. Nuclear Physics News17: 20–24.
  • 8. Arnold LJ, Duval M, Falguères C, Bahain JJ and Demuro M, 2012. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications. Radiation Measurements 47: 6–18.
  • 9. Aznar MC, Nathan R, Murray AS and Bøtter-Jensen L, 2003. Determination of differential dose rates in a mixed beta and gamma field using shielded Al2O3:C: results of Monte Carlo modelling. Radiation Measurements 37: 329–334.
  • 10. Bailiff I, 1982. Beta TLD apparatus for small samples. PACT6: 72–75.
  • 11. Bottollier-Depois JF, Chau Q, Bouisset P, Kerlau G, Plawinski L and Lebaron-Jacobs L, 2003. Assessing exposure to cosmic radiation on board aircraft. Advances in Space Research 32: 59–66.
  • 12. Bulur E and Göksu HY, 1997. Pulsed optically stimulated luminescence from α-Al2O3:C using green light emitting diodes. Radiation Measurements 27: 479–488.
  • 13. Bulur E and Göksu HY, 1999. Phototransferred thermoluminescence from α-Al2O3:C using blue light emitting diodes.Radiation Measurements 30: 203–206.
  • 14. Burbidge CI and Duller GAT, 2003. Combined gamma and beta dosimetry, using AhO3:C, for in situ measurements on a sequence of archaeological deposits. Radiation Measurements 37: 285–291.
  • 15. Currie LA, 1968. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical Chemistry 40: 586–593.
  • 16. Erfurt G, Krbetschek MR, Trautmann T and Stolz W, 2000. Radioluminescence (RL) behaviour of Al2O3:C-potential for dosimetric applications. Radiation Measurements 32: 735–739.
  • 17. Guérin G and Mercier N, 2011. Determining gamma dose rates by field gamma spectroscopy in sedimentary media: Results of Monte Carlo simulations. Radiation Measurements 46: 190–195.
  • 18. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–9.
  • 19. Kalchgruber R, 2002. α-Al2O3:C als Dosimeter zur Bestimmung der Dosisleistung bei der Lumineszenzdatierung. Ruprecht -- Karls -- Universität Heidelberg., PhD thesis (in German).
  • 20. Kalchgruber R and Wagner GA, 2006. Separate assessment of natural beta and gamma dose-rates with TL from single-crystal chips. Radiation Measurements 41: 154–162.
  • 21. Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M and Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30: 1–8.
  • 22. Kreutzer S, Dietze M, Burow C, Fuchs MC, Schmidt C, Fischer M and Friedrich J, 2017. Luminescence: Comprehensive Luminescence Dating Data Analysis. R package, version 0.7.5. https://CRAN.R-project.org/package=Luminescence.
  • 23. Markey BG, Colyott LE, McKeever SWS, 1995. Time-resolved optically stimulated luminescence from α-Al2O3:C.Radiation Measurements 24: 457–463.
  • 24. Martin L, 2015. Caractérisation et modélisation d’objets archéologiques en vue de leur datation par des méthodes paléo-dosimétriques. Simulation des paramètres dosimétriques sous Geant4. PhD thesis (in French). Université Bordeaux Montagine, France.
  • 25. Martin L, Incerti S and Mercier N, 2015a. Comparison of DosiVox simulation results with tabulated data and standard calculations. Ancient TL 33: 1–9.
  • 26. Martin L, Incerti S and Mercier N, 2015b. DosiVox: Implementing Geant 4-based software for dosimetry simulations relevant to luminescence and ESR dating techniques. Ancient TL 33: 1–10.
  • 27. McKeever SWS, Akselrod MS, Markey BG, 1996. Pulsed Optically Stimulated Luminescence Dosimetry Using Alpha-Al2O3:C. Radiation Protection Dosimetry 65: 267–272.
  • 28. Mejdahl V, 1970. Measurement of Environmental Radiation at Archaeological Excavation Sites. Archaeometry 12: 147–159.
  • 29. Mejdahl V, 1978. Measurement of environmental radiation at archaeological sites by means of TL dosimeters. PACT2: 70–83.
  • 30. Mercier N and Falguères, C, 2007. Field gamma dose-rate measurement with a NaI(Tl) detector: re-evaluation of the “threshold” technique. Ancient TL 25: 1–4.
  • 31. Miallier D, Guérin G, Mercier N, Pilleyre T and Sanzelle S, 2009. The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes. Ancient TL 27: 37–44.
  • 32. Oster L, Weiss D and Kristianpoller N, 1994. A study of photostimulated thermoluminescence in C-doped alpha -Al2O3 crystals. Journal of Physics D: Applied Physics 27: 1732–1736.
  • 33. R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://r-project.org.
  • 34. Richter A and Kumar T, 2014. Instruction Manual lexsyg smart – Automated TL/OSL Reader. Freiberg Instruments GmbH.
  • 35. Richter D, Dombrowski H, Neumaier S, Guibert P and Zink AC, 2010. Environmental gamma dosimetry with OSL of α-Al2O3:C for in situ sediment measurements. Radiation Protection Dosimetry 141: 27–35.
  • 36. Richter D, Richter A and Dornich K, 2015. Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application. Geochronometria 42: 202–209.
  • 37. Valladas G, 1982. Mesure de la dose annuelle de l’environnement d’un site par un dosimètre TL. PACT6: 77–85.
  • 38. Whitley von H and McKeever SWS, 2000. Photoionization of deep centers in Al2O3. Journal of Applied Physics 87: 249–256.
  • 39. Yukihara EG and McKeever SWS, 2011. Optically Stimulated Luminescence. Wiley.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd9a6721-6d32-4e73-81f0-4e8296d0dae3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.