PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Correlation Between K-value, Density Index and Bifilm Index in Determination of Liquid Al Cleanliness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloys are widely used in the industry thanks to its many advantages such as light weight and high strength. The use of this material in the market is increasing day by day with the developing technology. Due to the high energy inputs in the primary production, the use of secondary ingots by recycling from scrap material are more advantageous. However, the liquid metal quality is quite important in the use of secondary aluminum. It is believed that the quality of recycled aluminum is low, for this purpose, many liquid metal cleaning methods and test methods are used in the industry to assess the melt cleanliness level. In this study, it is aimed to examine the liquid metal quality in castings with varying temperature using K mold. A206 alloy was used, and the test parameters were selected as: (i) at 725 °C, 750 °C and 775 °C casting temperatures, (ii) different hydrogen levels. The hydrogen level was adjusted as low, medium and high with degassing, as_cast, and upgassing of the melt, respectively. The liquid metal quality of the cast samples was examined by the K mold technique. When the results were examined, it was determined that metal K values and the number of inclusions were high at the as-cast and up-gas liquid with increasing casting temperatures. It has been understood that the K mold technique is a practical method for the determination of liquid metal quality, if there is no reduced pressure test machine available at the foundry floor.
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 40 poz., il., rys., tab., wykr.
Twórcy
autor
  • Istanbul Technical University, Turkey
  • Sinop University, Turkey
autor
  • Bayburt University, Turkey d Foseco, Netherlands
autor
  • Bayburt University, Turkey d Foseco, Netherlands
autor
  • Bayburt University, Turkey d Foseco, Netherlands
  • Istanbul Technical University, Turkey
  • Foseco, Netherlands
Bibliografia
  • [1] Brooks, C.R. (1982). Heat treatment, structure, and properties of nonferrous alloys.
  • [2] Chen, W.-F., Lui, E.M. (2005). Handbook of structural engineering. CRC press. https://doi.org/10.1201/ 9781420039931.
  • [3] Balomenos, E., Panias, D. & Paspaliaris, I. (2011). Energy and exergy analysis of the primary aluminum production processes: A review on current and future sustainability. Mineral Processing & Extractive Metallurgy Review. 32(2), 69-89. https://doi.org/10.1080/08827508.2010.530721.
  • [4] Lin, R., Liu, B., Zhang, J. & Zhang, S. (2022). Microstructure evolution and properties of 7075 aluminum alloy recycled from scrap aircraft aluminum alloys. Journal of Materials Research and Technology. 19, 354-367. https://doi.org/10.1016/j.jmrt.2022.05.011.
  • [5] Odusote, J.K. & Ajayi, P.A. (2016). Mechanical properties and microstructure of recycled aluminum cast with zinc and copper additions. International Journal of Metalcasting. 10(4), 483-490. https://doi.org/10.1007/s40962-016-0060-4.
  • [6] Sigworth, G. (2011). Understanding quality in aluminum castings. International Journal of Metalcasting, 5, 7-22. https://doi.org/10.1007/BF03355504.
  • [7] Scampone, G., Pirovano, R., Mascetti, S. & Timelli, G. (2021). Experimental and numerical investigations of oxide-related defects in Al alloy gravity die castings. The International Journal of Advanced Manufacturing Technology. 117(5), 1765-1780. https://doi.org/10.1007/ s00170-021-07680-5.
  • [8] Fiorese, E., Bonollo, F., Timelli, G., Arnberg, L. & Gariboldi, E. (2015). New classification of defects and imperfections for aluminum alloy castings. International Journal of Metalcasting. 9(1), 55-66. https://doi.org/10.1007/BF03355602.
  • [9] Kaufman, J.G., Rooy, E.L. (2004). Aluminum alloy castings: Properties, processes, and applications. ASM International.
  • [10] Chiesa, F. & Regimbal, P. (2001). Distinguishing Microporosity From Macroshrinkage When Modeling Solidification of A 356 Castings. Transactions of the American Foundry Society and the One Hundred Fifth Annual Castings Congress. 1-11.
  • [11] Dispinar, D. & Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A. 528(10-11), 3860-3865. https://doi.org/10.1016/j.msea.2011.01.084.
  • [12] Singh, D. & Mitchel, D. (2001). Analysis of metal quality in a low pressure permanent mold foundry. Transactions of the American Foundry Society and the One Hundred Fifth Annual Castings Congress. 1-13.
  • [13] Kong, D., Sun, D.-Z., Yang, B., Qiao, H., Wei, C., Lang, Y., Song, H. & Gao, J. (2023). Characterization and modeling of damage behavior of a casting aluminum wheel considering inhomogeneity of microstructure and microdefects. Engineering Failure Analysis. 145, 107018, 1-25. DOI:10.1016/j.engfailanal.2022.107018.
  • [14] Tan, E., Tarakcılar, A., Dıspınar, D., Colak, M. & Kayıkcı, R. (2011). Reproducibility of reduced pressure test results in testing of liquid aluminum gas levels. In 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011 (pp.18). Elazig, Turkey.
  • [15] Çolak, M., Kayikci, R. & Dispinar, D. (2016). Melt cleanliness comparison of chlorine fluxing and Ar degassing of secondary Al-4Cu. Metallurgical and Materials Transactions B, 47, 2705-2709. DOI:10.1007/s11663-016-0745-3.
  • [16] Lazaro-Nebreda, J., Patel, J.B., Lordan, E., Zhang, Y., Karakulak, E., Al-Helal, K., Scamans, G.M. & Fan, Z. (2022). Degassing of aluminum alloy melts by high shear melt conditioning technology: an overview. Metals, 12(10), 1772, 1-21. https://doi.org/10.3390/met12101772.
  • [17] Nasresfahani, M.R. & Niroumand, B. (2020). Effect of degassing on hot tearing tendency of A206 aluminum cast alloy. International Journal of Metalcasting. 14(2), 538-546. https://doi.org/10.1007/s40962-019-00378-1.
  • [18] Reddy, B.M. & Nallusamy, T. (2021). Degassing of aluminum metals and its alloys in non-ferrous foundry. Advances in Materials Research. 5, 637-644. https://doi.org/10.1007/978- 981-15-8319-3_63.
  • [19] da Silva, M., Rebolledo, L., Pabel, T., Petkov, T., Planta, X., Tort, J. & Eskin, D. (2015). Evaluation of effect of ultrasonic degassing on components produced by low pressure die casting. International Journal of Cast Metals Research. 28(4), 193-200. https://doi.org/10.1179/1743133614Y.0000000141.
  • [20] Eskin, D., Alba-Baena, N., Pabel, T. & da Silva, M. (2015). Ultrasonic degassing of aluminium alloys: Basic studies and practical implementation. Materials Science and Technology. 31(1), 79-84. DOI:10.1179/1743284714Y.0000000587.
  • [21] Fan, Z.Y., Zuo, Y.B. & Jiang, B. (2011). A new technology for treating liquid metals with intensive melt shearing. Materials Science Forum. 690, 141-144. https://doi.org/10.4028/www.scientific.net/MSF.690.141.
  • [22] Galarraga, H., García de Cortázar, M., Arregi, E., Artola, A., Oncala, J. & Merchán-Zubieta, M. (2020). Gas blowing ultrasonic aluminium degassing assessment with the reduced pressure test (RPT) method. Archives of Foundry Engineering. 20(2), 111-117. DOI:10.24425/afe.2020.131312.
  • [23] Mostafaei, M., Ghobadi, M., Eisaabadi B,G., Uludağ, M. & Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B, 47, 3469-3475. DOI:10.1007/s11663-016-0786-7.
  • [24] Lashkari, O., Yao, L., Cockcroft, S. & Maijer, D. (2009). X-ray microtomographic characterization of porosity in aluminum alloy A356. Metallurgical and Materials Transactions A. 40(4), 991-999. DOI:10.1007/s11661-008-9778-9.
  • [25] Brůna, M. & Sládek, A. (2011). Hydrogen analysis and effect of filtration on final quality of castings from aluminium alloy AlSi7Mg0,3. Archives of Foundry Engineering. 11(spec.1), 5-10. ISSN (1897-3310).
  • [26] Habibi, N., Samuel, A., Samuel, F., Rochette, P. & Paquin, D. (2004). Effect of grain refining and Sr modification on Prefil measurement sensitivity in 356 alloys using electron probe microanalysis technique. International Journal of Cast Metals Research. 17(2), 79-87. https://doi.org/10.1179/136404604225014837.
  • [27] Paradis, M., Samuel, A., Doty, H. & Samuel, F. (2018). Inclusion measurement and identification in Mg-based alloys: Application of the brightimeter technique. International Journal of Metalcasting. 12(7), 2-19. https://doi.org/10.1007/s40962-016-0130-7.
  • [28] Haberl, K., Schumacher, P., Geier, G. & Stauder, B. (2009). Characterization of the melt quality and impurity content of an LM25 alloy. Metallurgical and Materials Transactions B. 40(6), 812-821. DOI:10.1007/s11663-009-9282-7.
  • [29] Hudson, S.W. & Apelian, D. (2016). Inclusion detection in molten aluminum: Current art and new avenues for in situ analysis. International Journal of Metalcasting. 10, 289-305. https://doi.org/10.1007/s40962-016-0030-x.
  • [30] Djurdjević, M.B., Odanović, Z. & Pavlović-Krstić, J. (2010). Melt quality control at aluminum casting plants. Metallurgical & Materials Engineering. 16(1), 63-76.
  • [31] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI:10.1016/j.matchar. 2019.109925.
  • [32] Gyarmati, G., Fegyverneki, G., Tokár, M. & Mende, T. (2021). The effects of rotary degassing treatments on the melt quality of an Al-Si casting alloy. International Journal of Metalcasting. 15(1), 141-151. https://doi.org/10.1007/s40962-020-00428-z.
  • [33] Campbell, J. (2015). Complete casting handbook: Metal casting processes, metallurgy, techniques and design. UK: Butterworth-Heinemann.
  • [34] Dispinar, D. & Campbell, J. (2004a). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280- 286. DOI:10.1179/136404604225020696.
  • [35] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294. DOI:10.1179/136404604225020704.
  • [36] Gyarmati, G., Vincze, F., Fegyverneki, G., Kéri, Z., Mende, T. & Molnár, D. (2022). The effect of rotary degassing treatments with different purging gases on the double oxide and nitride film content of liquid aluminum alloys. Metallurgical and Materials Transactions B. 53(2), 1244-1257. https://doi.org/10.1007/s11663-021-02414-0.
  • [37] Máté, M., Tokár, M., Fegyverneki, G. & Gyarmati, G. (2020). The Comparative Analysis of the Inclusion Removal Efficiency of Different Fluxes. Archives of Foundry Engineering. 20(2), 53-58. DOI:10.24425/afe.2020.131302.
  • [38] Dispinar, D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. Shape Casting: 5th International Symposium (pp. 243-251). Springer, Cham.
  • [39] Yüksel, Ç., Dışpınar, D. & Çiğdem, M. (2022). An analytical approach for the correlation between bifilm index and tensile properties of alsi7mg0. 3 (a356) aluminum alloy cleaned via rotary degassing and different fluxes. International Journal of Metalcasting. 9(1), 1-13. DOI:10.1007/s40962-022-00882-x.
  • [40] Erzi, E., Gürsoy, Ö., Yüksel, Ç., Colak, M. & Dispinar, D. (2019). Determination of acceptable quality limit for casting of A356 aluminium alloy: Supplier’s quality index (SQI). Metals. 9(9), 957, 1-14. https://doi.org/10.3390/met9090957.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd97ac3f-a32c-41a3-a475-efac17f348f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.