PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of rule induction to discover survival factors of patients after bone marrow transplantation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decision rules are commonly used tool for classification and knowledge discovery in data. The aim of this paper is to provide decision rule-based framework for analysis of survival data and apply it in mining of data describing patients after bone marrow transplantation. The paper presents a rule induction algorithm which uses sequential covering strategy and rule quality measures. An extended version of the algorithm gives the possibility of taking into account user’s requirements in the form of predefined rules and attributes which should be included in the final rule set. Additionally, in order to summarize the knowledge expressed by rule-based model, we propose the rule filtration algorithm which consists in selection of statistically significant rules describing the most disjoint parts of the entire data set. Selected rules are identified with so-called survival patterns. The survival patterns are rules which conclusions contain Kaplan-Meier estimates of survival function. In this way, the paper combines rule-based data classification and description with survival analysis. The efficiency of our method is illustrated with the analysis of data describing patients after bone marrow transplantation.
Rocznik
Tom
Strony
35--53
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Computer Sciences, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
autor
  • Institute of Computer Sciences, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
autor
  • Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wrocław Medical University, Bujwida 44, 50-345 Wrocław, Poland.
autor
  • Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wrocław Medical University, Bujwida 44, 50-345 Wrocław, Poland.
Bibliografia
  • [1] AGOTENES T., KOMOROWSKI J., LOKEN T., Taming large rule models in rough set approaches, Lecture Notes in Artificial Intelligence, 1999, Vol. 1704, pp. 193-203.
  • [2] AGRAWAL R., SRIKANT R., Fast Algorithms for Mining Association Rules, Proc. of the 20th VLDB Conference, Santiago, Chile, 2004.
  • [3] AN A., CERCONE N., Rule quality measures for rule induction systems – description and evaluation, Computational Intelligence, 2001, Vol. 17, No. 3, pp. 409-424.
  • [4] BAIRAGI R., SUCHINDRAN C. M., An estimation of the cut-off point maximizing sum of sensitivity and specificity, Sankhya, The Indian Journal of Statistics, 1989, Vol. 51, No. B-2, pp. 263-26.
  • [5] BAZAN J., SKOWRON A., ŚLĘZAK D., WRÓBLEWSKI J., Searching for the Complex Decision Reducts: The Case Study of the Survival Analysis, Lecture Notes in Artificial Intelligence, 2003, Vol. 2871, pp. 160-168.
  • [6] BELLAZZI R., DIOMIDOUS M., SARKAR I. N., TAKABAYASHI K., ZIEGLER A., MCCRAY A. T., Data analysis and data mining: current issues in biomedical informatics, Methods of Information in Medicine, 2011, Vol. 50, No. 6, pp. 536–544.
  • [7] BOU-HAMAD I., LAROCQUE D., BEN-AMEUR H., A review of survival trees, Statistics Surveys 5, 2011, pp. 44–71.
  • [8] BRUHA I., TKADLEC J., Rule quality for multiple-rules classifier: Empirical expertise and theoretical methodology, Intelligent Data Analysis, 2003, Vol. 7, pp. 99-124.
  • [9] CHAVES R., RAMIREZ J., GORRIZ J. M., PUNTONET C. G., Association rule-based feature selection method for Alzheimer‘s disease diagnosos, Expert Systems with Applications, 2012, Vol. 39, pp. 11766-11774.
  • [10] CHAWLA N. V., BOWYER K. W., HALL L. O., KEGELMEYER W. P., SMOTE: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, 2012, Vol. 16, pp. 321-357.
  • [11] CHEN S., LIU B., Generating Classification Rules According to User’s Existing Knowledge, Proc. of the SIAM International Conference on Data Mining SDM-01, 2001.
  • [12] CHRISTENSEN D., Measuring confirmation, Journal of Philosophy, 1999, Vol. XCVI, pp. 437-461.
  • [13] CLARKE E. J., WACLAWIW M. A., Probabilistic rule induction from a medical research study database, Computers and Biomedical Research, 1996, Vol. 29, pp. 271–83.
  • [14] COHEN W. W., Fast effective rule induction, Proc. of the twelfth Int. Conference ICML95, 1995, pp.115-123.
  • [15] DAUD N. R., CORNE D. W., Human readable rule induction in medical data mining, Lecture Notes in Electrical Engineering, 2009, Vol. 27, No. 7, pp. 787-798.
  • [16] DZEROSKI S., LAVRAC N., Rule induction and instance-based learning applied in medical diagnosis, Technol. Health Care, 1996, Vol. 4, No. 2, pp. 203-221.
  • [17] FAWCETT T., An introduction to ROC analysis, Pattern Recognition Letters, 2006, Vol. 27, pp. 861-874.
  • [18] FAWCETT T., PRIE a system for generation rulelist to maximize ROC performance, Data Mining and Knowledge Discovery, 2008, Vol. 17, pp. 207–224.
  • [19] FRANK A., ASUNCION A., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml], 2010.
  • [20] FÜRNKRANZ J., Separate-and-conquer rule learning, Artificial Intelligence Review, 1999, Vol. 13, pp. 3-54.
  • [21] FÜRNKRANZ J., FLACH P. A., ROC ’n’ Rule Learning – Towards a Better Understanding of Covering Algorithms, Machine Learning, 2005, Vol. 58, pp. 39-77.
  • [22] GAMBERGER D., LAVRAC N., Expert-guided subgroup discovery: methodology and application, Journal of Artificial Intelligence Research, 2002, Vol. 17, pp. 501-527.
  • [23] GRAF E., SCHMOOR C., SAUERBREI W., SCHUMACHER M., Assessment and Comparisons of Prognostic Classification Schemes for Survival Data, Statistics in Medicine, 1999, Vol. 18, pp. 2529–2545.
  • [24] GENG L., HAMILTON H. J., Interestingness measures for data mining: A survey, ACM Computing Surveys, 2006, Vol. 39, No. 3.
  • [25] GRECO S., PAWLAK Z., SŁOWIŃSKI R., Can Bayesian confirmation measures be useful for rough set decision rules? Engineering Applications of Artificial Intelligence, 2004, Vol. 17, pp. 345-361.
  • [26] GRZYMAŁA-BUSSE J. W., ZIARKO W., Data mining based on rough sets, in Wang J. (Ed.) Data Mining Opportunities and Challenges, IGI Publishing, Hershey, PA, USA, 2003, pp. 142-173.
  • [27] GRZYMAŁA-BUSSE J. W., Characteristic relations for incomplete data: A generalization of the indiscernibility relation, Transactions on rough sets IV, LNCS, 2005, Vol. 3700, pp. 58–68.
  • [28] HAZZANI M. J., MANI S., SHANKLE W. R., Acceptance of rules generated by machine learning among medical experts, Methods of Information in Medicine, 2001, Vol. 40, No. 5, pp. 380–385.
  • [29] JANSSEN F., FÜRNKRANZ J., On the quest for optimal rule learning heuristics, Machine Learning, 2010, Vol. 78, pp. 343-379.
  • [30] KAPLAN E. L., MEIER P., Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 1958, Vol. 53, pp. 457-481.
  • [31] KAUFMAN K. A., MICHALSKI R. S., Learning in Inconsistent World, Rule Selection in STAR/AQ18, Machine Learning and Inference Laboratory, 1999, Report No. P99-2.
  • [32] KAVSEK B., LAVRAC N., APRIORI-SD: Adapting association rule learning to subgroup discovery, Applied Artificial Intelligence, 2006, Vol. 20, pp. 543–583.
  • [33] KAŁWAK K., PORWOLIK J., MIELCAREK M., GORCZYŃSKA E., Higher CD34+ and CD3+ cell doses in the graft promote long-term survival, and have no impact on the incidence of serve acute or chronic Graft-versus-host disease after in vivo T cell-depleted unrelated donor hematopoietic stem cell transplantation in children, American Society for Blood and Marrow Transplantation. Biology of Blood Marrow Transplantation, 2010, Vol. 16, pp. 1388-1401.
  • [34] KRONEK L. P., REDDY A., Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data, Bioinformatics, 2008, Vol. 24, pp. 248-253.
  • [35] LAVRAC N., FLACH P. A., ZUPAN B., Rule Evaluation Measures: A Unifying View, Lecture Notes in Artificial Intelligence, 1999, Vol. 1634, pp. 174-185.
  • [36] LAVRAC N., KAVSEK B., FLACH P. A., TODOROVSKI L., Subgroup discovery with CN2-SD, Journal of Machine Learning Research, 2004, Vol. 5, pp. 153-188.
  • [37] MICHALSKI R. S., Discovering Classification Rules Using variable-Valued Logic System VL_1, Proc. of the 3rd Int. Joint Conf. on Artificial Intelligence, 1973, pp. 162-172.
  • [38] OHSAKI M., ABE H., TSUMOTO S., YOKOI H., YAMAGUCHI T., Evaluation of rule interestingness measures in medical knowledge discovery in databases, Artificial Intelligence in Medicine, 2007, Vol. 41, pp. 177-196.
  • [39] PADMANABHAN B., TUZHILIN A., A belief-driven method for discovering unexpected patterns, Proc. of the Fourth Int.l Conference on Knowledge Discovery and Data Mining, 1998, pp. 94–100.
  • [40] PAWLAK Z., Rough sets: Theoretical aspects of reasoning about data, Kluwer, Dordrecht, 1991.
  • [41] PATTARAINTAKORN P., CERCONE N., A foundation of rough sets theoretical and computational hybrid intelligent system for survival analysis, Computers and Mathematics with Applications, 2008, Vol. 56, pp. 1699-1708.
  • [42] R DEVELOPMENT CORE TEAM: R, A language and environment for statistical computing, R Foundation for Statistical Computing, http://www.R-project.org/, Vienna, Austria, 2011.
  • [43] RAFEA A. A., SHAFLIK S. S., SHAALAN K. F., An interactive system for association rule discovery for life assurance, Proc. of the Int. Conference on Computer, Communication and Control Technologies CCCT ’04, 2004, pp. 32-37.
  • [44] SAHAR S., Interestingness measures – On determining what is interesting, Data Mining and Knowledge Discovery Handbook, Springer-Verlag, Berlin, 2010, pp. 603-612.
  • [45] SIKORA M., Decision rule-based data models using TRS and NetTRS – methods and algorithms, Transaction on Rough Sets IX, LNCS, 2010, Vol. 5946, pp. 130-160.
  • [46] SIKORA M., WRÓBEL Ł., Data-driven Adaptive Selection of Rule Quality Measures for Improving the Rule Induction Algorithm, Lecture Notes in Artificial Intelligence, 2011, Vol. 6743, pp. 279-287.
  • [47] SIKORA M., GRUCA A., Induction and selection of the most interesting Gene Ontology based multiattribute rules for descriptions of gene groups, Pattern Recognition Letters, 2011, Vol. 32, pp. 258-269.
  • [48] SIKORA M., WRÓBEL Ł., Data-driven Adaptive Selection of Rule Quality Measures for Improving Rule Induction and Filtration Algorithms, International Journal of General Systems, 2013, Vol. 42, No. 4.
  • [49] SŁOWIŃSKI K., STEFANOWSKI J., SIWIŃSKI D., Application of rule induction and rough sets to verification of magnetic resonance diagnosis, Fundamenta Informaticae, 2002, Vol. 53, pp. 345-363.
  • [50] SMYTH P., GOODMAN R. M., Rule induction using information theory, Proc. of Knowledge Discovery in Databases, MIT Press, Boston, 1991, pp.159-175.
  • [51] STAJDUHAR I., DALBELO-BASIC B., Uncensoring censored data for machine learning: A likelihood-based approach, Expert Systems with Applications, 2012, Vol. 39, pp. 7226-7234.
  • [52] STEFANOWSKI J., Rough set based rule induction techniques for classification problems, Proc. of the 6th European Congress of Intelligent Techniques and Soft Computing, 1998, pp. 107-119.
  • [53] STEFANOWSKI J., VANDERPOOTEN D., Induction of Decision Rules in Classification and Discovery-Oriented Perspectives, International Journal of Intelligent Systems, 2001, Vol. 16, No. 1, pp. 13-27.
  • [54] ŚLĘZAK D., WIDZ S., Is It Important Which Rough-Set-Based Classifier Extraction and Voting Criteria Are Applied Together? Lecture Notes in Artificial Intelligence, 2010, Vol. 6086, pp. 187-196
  • [55] TSUMOTO S., TANAKA H., Automated discovery of medical expert system rules form clinical databases based on rough sets, Proc. of the Second Int. Conf. on Knowledge Discovery & Data Mining, AAAI Press, 1996, pp. 63-69.
  • [56] TSUMOTO S., Automated Discovery of Positive and Negative Knowledge in Medical Databases, IEEE Engineering in medicine and biology, 2000, Vol. 19, No. 4, pp. 56-62.
  • [57] TSUMOTO S., Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model, Information Sciences, 2004, Vol. 162, pp. 65-80.
  • [58] ULUTASDEMIR N., DAGLI O., Evaluation of risk of death in hepatitis by rule induction algorithms, Scientific Research and Essays, 2010, Vol. 20, No. 5, pp. 3059-3062.
  • [59] YAO Y. Y., ZHONG N., An analysis of quantitative measures associated with rules, Lecture Notes in Artificial Intelligence, 1999, Vol. 1574, pp. 479-488.
  • [60] YAO Y., ZHAO Y., WANG J., On reduct construction algorithms, Lecture Notes in Computer Sciences, 2008, Vol. 5150, pp. 100-117.
  • [61] WITTEN I. H., FRANK E., Data mining: practical machine learning tools and techniques, Morgan Kaufmann, 2005.
  • [62] WOHLARB L., FÜRNKRANZ J., A review and comparison of strategies for handling missing values in separate-and-conquer rule lerarning, Journal of Intelligent Information Systems, 2011, Vol. 36, No. 1, pp. 73-9.
  • [63] ZUPAN B., DEMSAR J., KATTAN M. W., BECK R., BRATKO I., Machine Learning for Survival Analysis: A Case Study on Recurrence of Prostate Cancer, Lecture Notes in Artificial Intelligence, 1990, Vol. 1620, pp. 346-355.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd95a66c-af5b-4910-8dc6-489c21e23b05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.