PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The relationship between Suspended Particulate Matter and Turbidity at a mooring station in a coastal environment: consequences for satellite-derived products

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From a data set of observations of Suspended Particulate Matter (SPM) concentration, Turbidity in Formazin Turbidity Unit (FTU) and fluorescence-derived chlorophyll-a at a mooring station in Liverpool Bay, in the Irish Sea, we investigate the seasonal variation of the SPM: Turbidity ratio. This ratio changes from a value of around 1 in winter (minimum in January-February) to 2 in summer (maximum in May-June). This seasonal change can be understood in terms of the cycle of turbulence and of the phytoplankton population that affects the nature, shape and size of the particles responsible for the Turbidity. The data suggest a direct effect of phytoplankton on the SPM: Turbidity ratio during the spring bloom occurring in April and May and a delayed effect, likely due to aggregation of particles, in July and August. Based on the hypothesis that only SPM concentration varies, but not the mass-specific backscattering coefficient of particles bbp *, semi-analytical algorithms aiming at retrieving SPM from satellite radiance ignore the seasonal variability of bbp * which is likely to be inversely correlated to the SPM: Turbidity ratio. A simple sinusoidal modulation of the relationship between Turbidity and SPM with time helps to correct this effect at the location of the mooring. Without applying a seasonal modulation to bbp *, there is an underestimation of SPM in summer by the Ifremer semi-analytical algorithm (Gohin et al., 2015) we tested. SPM derived from this algorithm, as expected from any semi-analytical algorithm, appears to be more related to in situ Turbidity than to in situ SPM throughout the year.
Słowa kluczowe
Czasopismo
Rocznik
Strony
365--378
Opis fizyczny
Bibliogr. 44 poz., mapy, tab., wykr.
Twórcy
  • Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
  • School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
autor
  • Ifremer, Dyneco/Pelagos, Centre Ifremer de Brest, Plouzane, France
autor
  • School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
autor
  • National Oceanography Centre, Joseph Proudman Building, Liverpool, United Kingdom
autor
  • Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, United Kingdom
Bibliografia
  • [1] Berthon, J. F., Shybanov, E., Lee, M. E., Zibordi, G., 2007. Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea. Appl. Opt. 46 (22), 5189-5203, http://dx.doi.org/10.1364/AO.46.005189.
  • [2] Binding, C. E., Bowers, D. G., Mitchelson-Jacob, E. G., 2003. An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery. Int. J. Remote Sens. 24 (19), 3791-3806, http://dx.doi.org/10.1080/0143116021000024131.
  • [3] Bowers, D. G., Hill, P. S., Braithwaite, K. M., 2014. The effect of particulate organic content on the remote sensing of marine suspended sediments. Remote Sens. Environ. 144, 172-178, http://dx.doi.org/10.1016/j.rse.2014.01.005.
  • [4] Devlin, M. J., Barry, J., Mills, D. K., Gowen, J., Foden, J., Sivyer, D., Greenwood, N., Pearce, D., Tett, P., 2009. Estimating the diffuse attenuation coefficient from optically active constituents in UK marine waters. Estuar. Coast. Shelf Sci. 82 (1), 73-83, http://dx.doi.org/10.1016/j.ecss.2008.12.015.
  • [5] Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., Knaeps, E., 2015. A single algorithm to retrieve Turbidity from remotely sensed data in all coastal and estuarine waters. Remote Sens. Environ. 156, 157-168, http://dx.doi.org/10.1016/j.rse.2014.09.020.
  • [6] Edwards, K. P., Barciela, R., Butenschön, M., 2012. Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf. Ocean Sci. 8 (6), 983-1000, http://dx.doi.org/10.5194/os-8-983-2012.
  • [7] Eleveld, M. A., Pasterkamp, R., Van der Woerd, H. J., Pietrzak, J., 2008. Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea. Estuar. Coast. Shelf Sci. 80 (1), 103-113, http://dx.doi.org/10.1016/j.ecss.2008.07.015.
  • [8] Ford, D. A., van der Molen, J., Hyder, K., Bacon, J., Barciela, R., Creach, V., McEwan, R., Ruardij, P., Forster, R., 2017. Observing and modelling phytoplankton community structure in the North Sea. Biogeosciences 14 (6), 1419-1444, http://dx.doi.org/10.5194/bg-14-1419-2017.
  • [9] Forget, P., Ouillon, S., Lahet, F., Broche, P., 1999. Inversion of reflectance spectra of non-chlorophyllous turbid coastal waters. Remote Sens. Environ. 68 (3), 264-272, http://dx.doi.org/10.1016/S0034-4257(98)00117-5.
  • [10] Gohin, F., 2011. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and Turbidity observed from space and in situ in coastal waters. Ocean Sci. 7 (5), 705-732, http://dx.doi.org/10.5194/os-7-705-2011.
  • [11] Gohin, F., Druon, J. N., Lampert, L., 2002. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by Seadas in coastal waters. Int. J. Remote Sens. 23 (8), 1639-1661, http://dx.doi.org/10.1080/01431160110071879.
  • [12] Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J. M., Delmas, D., Huret, M., Herbland, A., 2005. Satellite-derived parameters for biological modeling in coastal waters: illustration over the eastern continental shelf of the bay of Biscay. Remote Sens. Environ. 95 (1), 29-46, http://dx.doi.org/10.1016/j.rse.2004.11.007.
  • [13] Gohin, F., Bryère, P., Griffiths, J. W., 2015. The exceptional Surface Turbidity of the North-West European shelf seas during the stormy 2013-2014 winter: consequences for the initiation of the phytoplankton blooms? J. Mar. Syst. 148, 70-85, http://dx.doi.org/10.1016/j.jmarsys.2015.02.001.
  • [14] Guillou, N., Rivier, A., Gohin, F., Chapalain, G., 2015. Modeling nearsurface suspended sediment concentration in the English channel. J. Mar. Sci. Eng. 3 (2), 193-215, http://dx.doi.org/10.3390/jmse3020193.
  • [15] Guillou, N., Rivier, A., Chapalain, G., Gohin, F., 2016. The impact of tides and waves on near-surface suspended sediment concentrations in the English Channel. Oceanologia 59 (1), 28-36, http://dx.doi.org/10.1016/j.oceano.2016.06.002.
  • [16] Han, B., Loisel, H., Vantrepotte, V., Mériaux, X., Bryère, P., Ouillon, S., Dessailly, D., Xing, Q., Zhu, J., 2016. Development of a semi-analytical algorithm for the retrieval of Suspended Particulate Matter from remote sensing over clear to very turbid waters. Remote Sens. 8 (3), 211, http://dx.doi.org/10.3390/rs8030211.
  • [17] Huret, M., Gohin, F., Delmas, D., Lunven, M., Garçon, V., 2007. Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay. J. Mar. Syst. 65 (1-4), 509-531, http://dx.doi.org/10.1016/j.jmarsys.2005.07.007.
  • [18] Lahet, F., Ouillon, S., Forget, P., 2000. A three-component model of ocean color and its application in the Ebro river mouth area. Remote Sens. Environ. 72 (2), 181-190, http://dx.doi.org/10.1016/S0034-4257(99)00101-7.
  • [19] Li, Y., Huang, W., Fang, M., 1998. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data. Cont. Shelf Res. 18 (5), 487-500, http://dx.doi.org/10.1016/S0278-4343(97)00074-5.
  • [20] Loring, D. H., Rantala, R. T. T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci. Rev. 32 (4), 235-283, http://dx.doi.org/10.1016/0012-8252(92)90001-A.
  • [21] Martinez-Vicente, V., Land, P. E., Tilstone, G. H., Widdicombe, C., Fishwick, J. R., 2010. Particulate scattering and backscattering related to water constituents and seasonal changes in the Western English Channel. J. Plankton Res. 32 (5), 603-619, http://dx.doi.org/10.1093/plankt/fbq013.
  • [22] McKee, D., Cunningham, A., 2006. Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents. Estuar. Coast. Shelf Sci. 68 (1-2), 305-316, http://dx.doi.org/10.1016/j.ecss.2006.02.010.
  • [23] Ménésguen, A., Gohin, F., 2006. Observation and modelling of natural retention structures in the English Channel. J. Mar. Syst. 63 (3-4), 244-256, http://dx.doi.org/10.1016/j.jmarsys.2006.05.004.
  • [24] Mills, D. K., Greenwood, N., Kröger, S., Devlin, M., Sivyer, D. B., Pearce, D., Cutchey, S., Malcolm, S. J., 2005. New approaches to improve the detection of eutrophication in UK coastal waters. Environ. Res. Eng. Manage. 2 (32), 36-42.
  • [25] Moore, T. S., Dowell, M. D., Franz, B. A., 2012. Detection of coccolithophore blooms in ocean color satellite imagery: a generalised approach for use with multiple sensors. Remote Sens. Environ. 117, 249-263, http://dx.doi.org/10.1016/j.rse.2011.10.001.
  • [26] Morel, A., 1988. Optical modelling of the upper ocean in relation to its biogeneous matter content (Case 1 water). J. Geophys. Res. 93 (C9), 10749-10768, http://dx.doi.org/10.1029/JC093iC09p10749.
  • [27] Nechad, B., Ruddick, K., Park, Y., 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114 (4), 854-866, http://dx.doi.org/10.1016/j.rse.2009.11.022.
  • [28] Neil, C., Cunningham, A., McKee, D., 2011. Relationships between suspended mineral concentrations and red-waveband reflectances in moderately turbid shelf seas. Remote Sens. Environ. 115 (12), 3719-3730, http://dx.doi.org/10.1016/j.rse.2011.09.010.
  • [29] Neukermans, G., Loisel, H., Mériaux, X., Astoreca, R., McKee, D., 2012. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 57 (1), 124-144.
  • [30] Reynolds, R. A., Stramski, D., Neukermans, G., 2016. Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 61 (5), 1869-1890, http://dx.doi.org/10.1002/lno.10341.
  • [31] Rivier, A., Gohin, F., Bryère, P., Petus, C., Guillou, N., Chapalain, G., 2012. Observed vs. predicted variability in non-algal suspended particulate matter concentration in the English Channel in relations to tides and waves. Geo-Mar. Lett. 32 (2), 139-151, http://dx.doi.org/10.1007/s00367-011-0271.
  • [32] Sharples, J., Simpson, J. H., 1995. Semi-diurnal and longer period stability cycles in the Liverpool Bay Region of Freshwater Influence. Cont. Shelf Res. 15 (2-3), 295-313, http://dx.doi.org/10.1016/0278-4343(94)E0003-5.
  • [33] Shi, W., Wang, M., Jiang, L., 2011. Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea. J. Geophys. Res. Oceans 116 (C12), C12032, 13 pp., http://dx.doi.org/10.1029/2011JC007234.
  • [34] Smyth, T. J., Moore, G. F., Groom, S. B., Land, P. E., Tyrrell, T., 2002. Optical modeling and measurements of a coccolithophore bloom. Appl. Opt. 41 (36), 7679-7688, http://dx.doi.org/10.1364/ao.41.007679.
  • [35] Snyder, W. A., Arnone, R. A., Davis, C. O., Goode, W., Gould, R. W., Ladner, S., Lamela, G., Rhea, W. J., Stavn, R., Sydor, M., Weidemann, A., 2008. Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters. Appl. Opt. 47 (5), 666-677, http://dx.doi.org/10.1364/AO.47.000666.
  • [36] Sykes, P. A., Barciela, R. M., 2012. Assessment and development of a sediment model within an operational system. J. Geophys. Res. 117 (C4), C04036, 17 pp., http://dx.doi.org/10.1029/2011JC007420.
  • [37] Tett, P. B., 1987. Plankton. In: Baker, J. M., Wolff, W. J. (Eds.), Biological Surveys of Estuaries and Coasts. Cambridge Univ. Press, Cambridge, 280-341.
  • [38] Tilstone, G., Mallor-Hoya, S., Gohin, F., Belo Couto, A., Sa, C., Goela, P., Cristina, S., Airs, R., Icely, J., Zühlke, M., Groom, S., 2017. Which Ocean colour algorithm for MERIS in North West European waters? Remote Sens. Environ. 189, 132-151, http://dx.doi.org/10.1016/j.rse.2016.11.012.
  • [39] Van der Molen, J., Bolding, K., Greenwood, N., Mills, D. K., 2009. A 1-D vertical multiple grain size model of suspended particulate matter in combined currents and waves in shelf seas. J. Geophys. Res. 114 (F1), F01030, 15 pp., http://dx.doi.org/10.1029/2008JF001150.
  • [40] Van der Molen, J., Ruardij, P., Greenwood, N., 2016. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model. Biogeosciences 13 (8), 2593-2609, http://dx.doi.org/10.5194/bg-13-2593-2016.
  • [41] Van der Molen, J., Ruardij, P., Greenwood, N., 2017. A 3D SPM model for biogeochemical modelling, with application to the northwest European continental shelf. J. Sea Res., http://dx.doi.org/10.1016/j.seares.2016.12.003 (in press).
  • [42] Van der Woerd, H. J., Pasterkamp, R., 2008. HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters. Remote Sens. Environ. 112 (4), 1795-1807, http://dx.doi.org/10.1016/j.rse.2007.09.001.
  • [43] Wolf, J., Brown, J. M., Howarth, M. J., 2011. The wave climate of Liverpool Bay — observations and modelling. Ocean Dynam. 61 (5), 639-655, http://dx.doi.org/10.1007/s10236-011-0376-9.
  • [44] Woźniak, S. B., 2014. Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56 (1), 7-39, http://dx.doi.org/10.5697/oc.56-1.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd9488f6-02ba-4850-ac63-378610654caf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.