PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mapping and Assessment of Geological Lineaments with the Contribution of Earth Observation Data: A Case Study of the Zaer Granite Massif, Western Moroccan Meseta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Zaer granitic massif is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta. It is characterized by a deformation which is manifested by a network of fractures of different scales. Thanks to the technology currently available, many geological studies rely heavily on the mapping of geological lineaments, especially in structural geology. This has become more reliable with access to earth observation data using optical and radar sensors as well as the various remote sensing techniques. Therefore, the objective of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and radar Sentinel 1 datasets using the automatic method to extract lineaments. Furthermore, this work focuses on quantitative lineament analysis to determine lineament trends and subsequently compare them with global and regional tectonic movement trends. The lineaments obtained through different satellite images were validated by including the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field investigation. Comparison of these results indicates that Sentinel 1 imagery provides a better correlation between automated extraction lineaments and major fault zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. The final lineament map obtained from the VH and VV polarizations shows two major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.
Słowa kluczowe
Rocznik
Strony
107--144
Opis fizyczny
Bibliogr. 129 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Hassan II University of Casablanca, Faculty of Sciences Ben M’sick, Laboratory of Applied Geology, Geoinformatics and Environment, Casablanca, Morocco
  • Hassan II University of Casablanca, Casablanca, Morocco
  • Hassan II University of Casablanca, Casablanca, Morocco
  • Hassan II University of Casablanca, Casablanca, Morocco
  • Moulay Ismail University, Errachidia, Morocco
autor
  • Cadi Ayyad University, Marrakesh, Morocco
  • Hassan II University of Casablanca, Casablanca, Morocco
  • Hassan II University of Casablanca, Casablanca, Morocco
Bibliografia
  • Hobbs W.H.: Lineaments of the Atlantic border region. Geological Society of America Bulletin, vol. 15(1), 1904, pp. 483–506. https://doi.org/10.1130/GSAB-15-483.
  • Hung L.Q., Batelaan O., De Smedt F.: Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. [in:] Ehlers M., Michel U. (eds.), Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, Proceedings of SPIE, vol. 5983, 2005, pp. 59830T1–59830T12. https://doi.org/10.1117/12.627699.
  • Nath B., Niu Z., Acharjee S.: Pre-earthquake anomaly detection and assessment through lineament changes observation using multi-temporal Landsat 8-OLI imageries: Case of Gorkha and Imphal. Multi-purposeful Application of Geospatial Data, vol. 8, 2017, pp. 149–171. https://doi.org/10.5772/intechopen.72735.
  • Zhumabek Z., Assylkhan B., Alexandr F., Dinara T., Altynay K.: Automated lineament analysis to assess the geodynamic activity areas. Procedia Computer Science, vol. 121, 2017, pp. 699–706. https://doi.org/10.1016/j.procs.2017.11.091.
  • El-Sawy E.S.K., Ibrahim A.M., El-Bastawesy M.A., El-Saud W.A.: Automated, manual lineaments extraction and geospatial analysis for Cairo-Suez district (Northeastern Cairo-Egypt), using remote sensing and GIS. International Journal of Innovative Science, Engineering and Technology, vol. 3(5), 2016, pp. 491–500.
  • Kocal A., Duzgun H.S., Karpuz C.: Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery. ISPRS Archives [XXth ISPRS Congress Technical Commission VII, July 12–23, 2004, Istanbul, Turkey], vol. XXXV-B7, 2004, pp. 1073–1078.
  • O’Leary D.W., Friedman J.D., Pohn H.A.: Lineament, linear, lineation: Some proposed new standards for old terms. Geological Society of America Bulletin, vol. 87(10), 1976, pp. 1463–1469. https://doi.org/10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2.
  • Souei A., Zouaghi T., Khemiri S.: Lineament characterization for groundwater targeting using satellite images and field data. Earth Science Informatics, vol. 16, 2023, pp. 455–479. https://doi.org/10.1007/s12145-022-00888-3.
  • Zouaghi T., Harbi H.: Airborne geophysics and remote sensing of an Nimas-Khadra area, southern Arabian shield: New insights into structural framework and mineral occurrences. Advances in Space Research, vol. 70(11), 2022, pp. 3649–3673. https://doi.org/10.1016/j.asr.2022.08.046.
  • Kassou A., Essahlaoui A., Aissa M.: Extraction of structural lineaments from satellite images Landsat 7 ETM+ of Tighza Mining District (Central Morocco). Research Journal of Earth Sciences, vol. 4(2), 2012, pp. 44–48.
  • Ranganai R.T., Ebinger C.J.: Aeromagnetic and Landsat TM structural interpretation for identifying regional groundwater exploration targets, south-central Zimbabwe Craton. Journal of Applied Geophysics, vol. 65(2), 2008, pp. 73–83. https://doi.org/10.1016/j.jappgeo.2008.05.009.
  • Corgne S., Magagi R., Yergeau M., Sylla D.: An integrated approach to hydrogeological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sensing of Environment, vol. 114(9), 2010, pp. 1863–1875. https://doi.org/10.1016/j.rse.2010.03.004.
  • Jordan G., Schott B.: Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sensing of Environment, vol. 94(1), 2005, pp. 31–38. https://doi.org/10.1016/j.rse.2004.08.013.
  • Marghany M., Hashim M.: Lineament mapping using multispectral remote sensing satellite data. International Journal of the Physical Sciences, vol. 5(10), 2010, pp. 1501–1507.
  • Pour A.B., Hashim M., Makoundi C., Zaw K.: Structural mapping of the Bentong-Raub Suture Zone using PALSAR remote sensing data, Peninsular Malaysia: Implications for sediment-hosted/orogenic gold mineral systems exploration. Resource Geology, vol. 66(4), 2016, pp. 368–385. https://doi.org/10.1111/rge.12105.
  • Raj K.G.: Origin and significance of Hem Avathi – Tirthahalli mega-lineament – A concept. [in:] IGARSS 89: 12th Canadian Symposium on Remote Sensing: Remote Sensing: An Economic Tool for the Nineties: Vancouver, Canada, July 10–14, 1989. Volume 1, IEEE, Piscataway 1989, pp. 112–115. https://doi.org/10.1109/IGARSS.1989.567170.
  • Jordan G., Meijninger B.M.L., van Hinsbergen D.J.J., Meulenkamp J.E., van Dijk P.M.: Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, vol. 7(3), 2005, pp. 163–182. https://doi.org/10.1016/j.jag.2005.03.003.
  • Lim C.S., Komoo I., Tjia H.D.: TiungSAT-1 imaging applications. [in:] Othman M., Arshad A.S. (eds.), TiungSAT-1: From Inception to Inauguration, Astronautic Technology (M) Sdn. Bhd., Kuala Lumpur 2001, pp. 169–184.
  • Abdullah A., Mat Akhir J., Abdullah I.: Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran–Sungi Lembing area, Malaysia. Electronic Journal of Geotechnical Engineering, vol. 15(J), 2010, pp. 949–957.
  • Hashim M., Ahmad S., Md Johari M.A., Pour A.B.: Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Advances in Space Research, vol. 51(5), 2013, pp. 874–890. https://doi.org/10.1016/j.asr.2012.10.004.
  • Javhar A., Chen X., Bao A., Jamshed A., Yunus M., Jovid A., Latipa T.: Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sensing, vol. 11(7), 2019, 778. https://doi.org/10.3390/rs11070778.
  • Masoud A., Koike K.: Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66(6), 2011, pp. 818–832. https://doi.org/10.1016/j.isprsjprs.2011.08.003.
  • Raj S.K., Ahmed S.A.: Lineament extraction from Southern Chitradurga Schist Belt using Landsat TM, ASTER GDEM and geomatics techniques. International Journal of Computer Applications, vol. 93(12), 2014, pp. 12–20. https://doi.org/10.5120/16266-5993.
  • Saadi N.M., Abdel Zaher M., El-Baz F., Watanabe K.: Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya. International Journal of Applied Earth Observation and Geoinformation, vol. 13(5), 2011, pp. 778–791. https://doi.org/10.1016/j.jag.2011.05.016.
  • Al-Dossary S., Marfurt K.J.: Lineament-preserving filtering. Geophysics, vol. 72(1), 2007, pp. P1–P8. https://doi.org/10.1190/1.2387138.
  • Hamdani N., Baali A.: Fracture network mapping using Landsat 8 OLI data and linkage with the karst system: A case study of the Moroccan central Middle Atlas. Remote Sensing in Earth Systems Sciences, vol. 2(1), 2019, pp. 1–17. https://doi.org/10.1007/s41976-019-0011-y.
  • Masoud A., Koike K.: Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, vol. 45(4–5), 2006, pp. 467–477. https://doi.org/10.1016/j.jafrearsci.2006.04.005.
  • Si Mhamdi H., Raji M., Maimouni S., Oukassou M.: Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arabian Journal of Geosciences, vol. 10(5), 2017, 125. https://doi.org/10.1007/s12517-017-2912-5.
  • Pour A.B., Hashim M.: ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. SpringerPlus, vol. 3, 2014, 130. https://doi.org/10.1186/2193-1801-3-130.
  • Aydogan D., Pinar A., Elmas A., Tarhan Bal O., Yuksel S.: Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data. Earth Planets Space, vol. 65(4), 2013, pp. 299–309. https://doi.org/10.5047/eps.2012.08.014.
  • Xu J., Wen X., Zhang H., Luo D., Li J., Xu L., Yu M.: Automatic extraction of lineaments based on wavelet edge detection and aided tracking by hillshade. Advances in Space Research, vol. 65(1), 2020, pp. 506–517. https://doi.org/10.1016/j.asr.2019.09.045.
  • Yeomans C.M., Middleton M., Shail R.K., Grebby S., Lusty P.A.J.: Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England. Computers and Geosciences, vol. 123, 2019, pp. 137–148. https://doi.org/10.1016/j.cageo.2018.11.005.
  • Al-Nahmi F., Saddiqi O., Hilali A., Rhinane H., Baidder L., El Arabi H., Khanbari K.: Application of remote sensing in geological mapping, case study Al Maghrabah area – Hajjah region, Yemen. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV–4/W4, 2017, pp. 63–71. https://doi.org/10.5194/isprs-annals-IV-4-W4-63-2017.
  • Bamoumen H., Aarab E., Soulaimani A.: Evolution tectono-sédimentaire et magmatique des bassins viséen supérieur d’Azrou Khénifra et des Jebilet orientales (Meseta marocaine). Estudios Geológicos, vol. 64(2), 2008, pp. 107–122. https://doi.org/10.3989/egeol.08642.020.
  • Hoepffner C.: La tectonique hercynienne dans l’Est du Maroc. Université de Louis Pasteur, Strasbourg 1987 [thesis].
  • Hoepffner C., Soulaimani A., Piqué A.: The Moroccan Hercynides. Journal of African Earth Sciences, vol. 43(1–3), 2005, pp. 144–165. https://doi.org/10.1016/j.jafrearsci.2005.09.002.
  • Michard A.: Eléments de Géologie Marocaine. Notes et Mémoires du Service Géologique Maroc, vol. 252, Editions du Service Géologique du Maroc, Rabat 1976.
  • Mrini Z., Rafi A., Duthou J.L., Vidal P.: Chronologie Rb-Sr des granitoïdes hercyniens du Maroc: conséquences. Bulletin de la Société Géologique de France, vol. 163(3), 1992, pp. 281–291.
  • Diot H.: Mise en place des granitoïdes hercyniens de la Meseta marocaine, étude structurale des massifs de Sebt de Brikine (Rehamna), de Zaër et d’Oulmès (Massif Central) et d’Aouli-Boumia (Haute Moulouya). Implications géodynamiques. Université de Paul Sabatier, Toulouse 1989 [thesis].
  • Michard A., Hoepffner C., Soulaimani A., Baidder L.: The Variscan Belt. [in:] Michard A., Saddiqi O., Chalouan A., Frizon de Lamotte D. (eds.), Continental Evolution: The Geology of Morocco, Lecture Notes in Earth Sciences, vol. 116, Springer, Berlin, Heidelberg, 2008, pp. 65–132. https://doi.org/10.1007/978-3-540-77076-3_3.
  • Michard A., Soulaimani A., Hoepffner C., Ouanaimi H., Baidder L., Rjimati E.C., Saddiqi O.: The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics, vol. 492(1–4), 2010, pp. 1–24. https://doi.org/10.1016/j.tecto.2010.05.021.
  • Giuliani G., Cheilletz A., Zimmermann J.L.: The emplacement, geochemistry and petrogenesis of two central Morocco Hercynian granites. Geotectonic implications. Journal of African Earth Sciences, vol. 9(3–4), 1989, pp. 617–629. https://doi.org/10.1016/0899-5362(89)90046-8.
  • Haïmeur J., Chabane A., El Amrani El Hassani I.E.: Analyse pétro-minéralogique des interactions granite-enclaves dans le pluton hercynien de Zaër (Maroc central); implications pétrogénétiques. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, vol. 25, 2003, pp. 1–29.
  • Bouabdelli M.: Tectonique et sédimentation dans un bassin orogénique: le sillon Viséen d’Azrou-Khenifra (Est du massif Hercynien Central du Maroc). Université de Louis Pasteur, Strasbourg 1989 [thesis].
  • Giuliani G.: Découverte de minéralisations en Sn-W-Mo dans le pluton granitique hercynien des Zaërs (Massif Central marocain). Comptes Rendus de l’Académie des Sciences Paris, vol. 290(D), 1980, pp. 1397–1399.
  • Haïmeur J.: Pétrologie et pétrologie structurale du pluton composite de Zaër: Implication à la pétrogenèse du système granitique hercynien du Maroc Central. Université Ibn Tofaïl, Kénitra 2005 [thesis].
  • Mahmood A.: Etude pétrologique du granite hercynien des Zaër (Massif Central Marocain). Université de Clermont-Ferrand, Clermont-Ferrand 1980 [thesis].
  • Mrini Z.: Age et origine des granitoïdes hercyniens du Maroc. Apport de la géochronologie et de la géochimie isotopique (Sr, Nd, Pb). Université Blaise-Pascal, Clermont-Ferrand 1985 [thesis].
  • Roy D.P., Wulder M.A., Loveland T.R., Woodcock C.E., Allen R.G., Anderson M.C., Helder D. et al.: Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, vol. 145, 2014, pp. 154–172. https://doi.org/10.1016/j.rse.2014.02.001.
  • Wulder M.A., Loveland T.R., Roy D.P., Crawford C.J., Masek J.G., Woodcock C.E., Allen R.G. et al.: Current status of Landsat program, science, and applications. Remote Sensing of Environment, vol. 225, 2019, pp. 127–147. https://doi.org/10.1016/j.rse.2019.02.015.
  • Loveland T.R., Irons J.R.: Landsat 8: The plans, the reality, and the legacy. Remote Sensing of Environment, vol. 185, 2016, pp. 1–6. https://doi.org/10.1016/j.rse.2016.07.033.
  • Pandey P., Sharma L.N.: Comparison of directional and non-directional filter techniques for lineament extraction using landsat-8 OLI to study active tectonics in parts of Northwestern HFT. Research Journal of Recent Sciences, vol. 8(2), 2019, pp. 31–37.
  • Abrams M., Tsu H., Hulley G., Iwao K., Pieri D., Cudahy T., Kargel J.: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, vol. 38, 2015, pp. 292–301. https://doi.org/10.1016/j.jag.2015.01.013.
  • Bedini E.: Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland. Journal of Hyperspectral Remote Sensing, vol. 8(2), 2018, pp. 47–59. https://doi.org/10.29150/jhrs.v8.2.p47-59.
  • Obata K., Tsuchida S., Iwao K.: Inter-band radiometric comparison and calibration of ASTER visible and near-infrared bands. Remote Sensing, vol. 7(11), 2015, pp. 15140–15160. https://doi.org/10.3390/rs71115140.
  • Kouyama T., Kato S., Kikuchi M., Sakuma F., Miura A., Tachikawa T., Tsuchida S. et al.: Lunar calibration for ASTER VNIR and TIR with observations of the Moon in 2003 and 2017. Remote Sensing, vol. 11(22), 2019, 2712. https://doi.org/10.3390/rs11222712.
  • Obata K., Tsuchida S., Yamamoto H., Thome K.: Cross-calibration between ASTER and MODIS visible to near-infrared bands for improvement of ASTER radiometric calibration. Sensors, vol. 17(8), 2017, 1793. https://doi.org/10.3390/s17081793.
  • Zhang X., Pazner M., Duke N.: Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, vol. 62(4), 2007, pp. 271–282. https://doi.org/10.1016/j.isprsjprs.2007.04.004.
  • Bedini E.: Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research, vol. 47(1), 2011, pp. 60–73. https://doi.org/10.1016/j.asr.2010.08.021.
  • El Janati M.: Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. Journal of African Earth Sciences, vol. 151, 2019, pp. 95–106. https://doi.org/10.1016/j.jafrearsci.2018.12.002.
  • Fujisada H., Ono A.: Observational performance of ASTER instrument on EOSAM1 spacecraft. Advances in Space Research, vol. 14(3), 1994, pp. 147–150. https://doi.org/10.1016/0273-1177(94)90207-0.
  • Ge W., Cheng Q., Jing L., Armenakis C., Ding H.: Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Advances in Space Research, vol. 62(7), 2018, pp. 1702–1716. https://doi.org/10.1016/j.asr.2018.06.036.
  • van der Meer F.D., van der Werff H.M.A., van Ruitenbeek F.J.A., Hecker C.A., Bakker W.H., Noomen M.F., van der Meijde M. et al.: Multiand hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, vol. 14(1), 2012, pp. 112–128. https://doi.org/10.1016/j.jag.2011.08.002.
  • Gad S., Kusky T.: ASTER spectral ratioing for lithological mapping in the ArabianNubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, vol. 11(3), 2007, pp. 326–335. https://doi.org/10.1016/j.gr.2006.02.010.
  • Hewson R.D., Cudahy T.J., Huntington J.F.: Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. [in:] IGARSS 2001: Proceedings: IEEE 2001 International Geoscience and Remote Sensing Symposium: Scanning the Present and Resolving the Future: 9–13 July, 2001, University of New South Wales, Sydney, Australia. Volume 2, IEEE, Piscataway 2001, pp. 724–726. https://doi.org/10.1109/IGARSS.2001.976615.
  • Rowan L.C., Mars J.C.: Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, vol. 84(3), 2003, pp. 350–366. https://doi.org/10.1016/S0034-4257(02)00127-X.
  • Rowan L.C., Schmidt R.G., Mars J.C.: Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, vol. 104(1), 2006, pp. 74–87. https://doi.org/10.1016/j.rse.2006.05.014.
  • Castillo J.A.A., Apan A.A., Maraseni T.N., Salmo III S.G.: Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 134, 2017, pp. 70–85. https://doi.org/10.1016/j.isprsjprs.2017.10.016.
  • Berger M., Moreno J., Johannessen J.A., Levelt P.F., Hanssen R.F.: ESA’s sentinel missions in support of Earth system science. Remote Sensing of Environment, vol. 120, 2012, pp. 84–90. https://doi.org/10.1016/j.rse.2011.07.023.
  • Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Hoersch B. et al.: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, vol. 120, 2012, pp. 25–36. https://doi.org/10.1016/j.rse.2011.11.026.
  • Unninayar S., Olsen L.M.: Monitoring, observations, and remote sensing – global dimensions. Reference Module in Earth Systems and Environmental Sciences, 2015, p. 31. https://doi.org/10.1016/B978-0-12-409548-9.09572-5.
  • Li J., Roy D.P.: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, vol. 9(9), 2017, 902. https://doi.org/10.3390/rs9090902.
  • Ge W., Cheng Q., Tang Y., Jing L., Gao C.: Lithological classification using Sentinel-2A data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sensing, vol. 10(4), 2018, 638. https://doi.org/10.3390/rs10040638.
  • van der Werff H., van der Meer F.: Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sensing, vol. 8(11), 2016, 883. https://doi.org/10.3390/rs8110883.
  • Bourbigot M., Johnsen H., Piantanida R.: Sentinel-1 product definition. ESA. Document Number: S1-RS-MDA-52-7440, 25 March 2016.
  • Kaplan G., Avdan U.: Sentinel-1 and Sentinel-2 data fusion for wetlands mapping: Balikdami, Turkey. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-3, 2018, pp. 729–734. https://doi.org/10.5194/isprs-archives-XLII-3-729-2018.
  • Tavares P.A., Beltrão N.E.S., Guimarães U.S., Teodoro A.C.: Integration of Sentinel-1 and Sentinel-2 for classification and LULC mapping in the urban area of Belém, Eastern Brazilian Amazon. Sensors, vol. 19(5), 2019, 1140. https://doi.org/10.3390/s19051140.
  • Shebl A., Csámer Á.: Reappraisal of DEMs, Radar and optical datasets in lineaments extraction with emphasis on the spatial context. Remote Sensing Applications: Society and Environment, vol. 24, 2021, 100617. https://doi.org/10.1016/j.rsase.2021.100617.
  • Abrams M., Crippen R., Fujisada H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sensing, vol. 12(7), 2020, 1156. https://doi.org/10.3390/rs12071156.
  • Adiri Z., El Harti A., Jellouli A., Lhissou R., Maacha L., Azmi M., Zouhair M., Bachaoui E.M.: Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Advances in Space Research, vol. 60(11), 2017, pp. 2355–2367. https://doi.org/10.1016/j.asr.2017.09.006.
  • Jellouli A., El Harti A., Adiri Z., Chakouri M., El Hachimi J., Bachaoui E.M.: Application of optical and radar satellite images for mapping tectonic lineaments in kerdous inlier of the Anti-Atlas belt, Morocco. Remote Sensing Applications: Society and Environment, vol. 22, 2021, 100509. https://doi.org/10.1016/j.rsase.2021.100509.
  • Mahmood A.: Emplacement of the zoned Zaer pluton, Morocco. Geological Society of America Bulletin, vol. 96(7), 1985, pp. 931–939. https://doi.org/10.1130/0016-7606(1985)96<931:EOTZZP>2.0.CO;2.
  • Pour A.B., Park T.Y.S., Park Y., Hong J.K., Muslim A.M., Läufer A., Crispini L. et al.: Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper-gold mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sensing, vol. 11(20), 2019, 2430. https://doi.org/10.3390/rs11202430.
  • Pour A.B., Hashim M.: Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia. Natural Hazards and Earth System Sciences, vol. 17, 2017, pp. 1285–1303. https://doi.org/10.5194/nhess-17-1285-2017.
  • Meyer D., Siemonsma D., Brooks B., Johnson L.: Advanced Spaceborne Thermal Emission and Reflection Radiometer level 1 precision terrain corrected registered at-sensor radiance (AST_L1T) product, algorithm theoretical basis document. Open-File Report 2015-1171, Reston, VA, 2015. https://doi.org/10.3133/ofr20151171.
  • Cooley T., Anderson G.P., Felde G.W., Hoke M.L., Ratkowski A.J., Chetwynd J.H., Gardner J.A. et al.: FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. [in:] IGARSS 2002: IEEE International Geoscience and Remote Sensing Symposium, Toronto, Ontario, Canada, 24–28 June 2002. Volume 3, IEEE, Piscataway 2002, pp. 1414–1418. https://doi.org/10.1109/IGARSS.2002.1026134.
  • Phiri D., Morgenroth J., Xu C., Hermosilla T.: Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. International Journal of Applied Earth Observation and Geoinformation, vol. 73, 2018, pp. 170–178. https://doi.org/10.1016/j.jag.2018.06.014.
  • Laben C.A., Brower B.V.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Patent no. 6011875, date of publication January 4, 2000.
  • Maurer T.: How to pan-sharpen images using the Gram-Schmidt pan-sharpen method – a recipe. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W1, 2013, pp. 239–244. https://doi.org/10.5194/isprsarchives-XL-1-W1-239-2013.
  • Amer R., Kusky T., El Mezayen A.: Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, vol. 49(1), 2012, pp. 121–134. https://doi.org/10.1016/j.asr.2011.09.024.
  • Yang M., Kang L., Chen H., Zhou M., Zhang J.: Lithological mapping of East Tianshan area using integrated data fused by Chinese GF-1 PAN and ASTER multi-spectral data. Open Geosciences, vol. 10(1), 2018, pp. 532–543. https://doi.org/10.1515/geo-2018-0042.
  • Vasilakos C., Kavroudakis D., Georganta A.: Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed Mediterranean ecosystem. Remote Sensing, vol. 12(12), 2020, 2005. https://doi.org/10.3390/rs12122005.
  • Louis J., Pflug B., Main-Knorn M., Debaecker V., Mueller-Wilm U., Iannone R.Q., Giuseppe Cadau E. et al.: Sentinel-2 global surface reflectance level-2A product generated with Sen2Cor. [in:] IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July – 2 August 2019, IEEE, Piscataway 2000, pp. 8522–8525. https://doi.org/10.1109/IGARSS.2019.8898540.
  • Vuolo F., Żółtak M., Pipitone C., Zappa L., Wenng H., Immitzer M., Weiss M. et al.: Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sensing, vol. 8(11), 2016, 938. https://doi.org/10.3390/rs8110938.
  • Filipponi F.: Sentinel-1 GRD preprocessing workflow. Proceedings, vol. 18(1), 2019, 11. https://doi.org/10.3390/ECRS-3-06201.
  • Twele A., Cao W., Plank S., Martinis S.: Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing, vol. 37(13), 2016, pp. 2990–3004. https://doi.org/10.1080/01431161.2016.1192304.
  • Crósta A.P., De Souza Filho C.R., Azevedo F., Brodie C.: Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, vol. 24(21), 2003, pp. 4233–4240. https://doi.org/10.1080/0143116031000152291.
  • Li N.: Textural and rule-based lithological classification of remote sensing data, and geological mapping in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. Ludwig-Maximilians-Universität München, Munich 2010 [thesis].
  • Pour A.B., Hashim M.: The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, vol. 44, 2012, pp. 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009.
  • Singh A., Harrison A.: Standardized principal components. International Journal of Remote Sensing, vol. 6, 1985, pp. 883–896. https://doi.org/10.1080/01431168508948511.
  • Gabr S., Ghulam A., Kusky T.: Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, vol. 38(1–2), 2010, pp. 59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007.
  • Amer R., Kusky T., Ghulam A.: Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences, vol. 56(2–3), 2010, pp. 75–82. https://doi.org/10.1016/j.jafrearsci.2009.06.004.
  • Walsh S.J., Mynar F.: Landsat digital enhancements for lineament detection. Environmental Geology and Water Sciences, vol. 8(3), 1986, pp. 123–128. https://doi.org/10.1007/BF02509898.
  • Paganelli F., Grunsky E.C., Richards J.P., Pryde R.: Use of RADARSAT-1 principal component imagery for structural mapping: a case study in the Buffalo Head Hills area, northern central Alberta, Canada. Canadian Journal of Remote Sensing, vol. 29(1), 2003, pp. 111–140. https://doi.org/10.5589/m02-084.
  • Si Mhamdi H., Raji M., Oukassou M.: Utilisation de la télédétection dans la cartographie automatique des linéaments géologiques du granitoïde de Tichka (Haut Atlas Occidental). European Journal of Scientific Research, vol. 142(4), 2016, pp. 321–333.
  • Pour A.B., Hashim M.: Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, vol. 64, 2015, pp. 13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011.
  • Marston B.E., Jenny B.: Improving the representation of major landforms in analytical relief shading. International Journal of Geographical Information Science, vol. 29(7), 2015, pp. 1144–1165. https://doi.org/10.1080/13658816.2015.1009911.
  • Alhirmizy S.: Automatic mapping of lineaments using shaded relief images derived from Digital Elevation Model (DEM) in Kirkuk Northeast Iraq. International Journal of Science and Research, vol. 4(5), 2015, pp. 2228–2233.
  • Li X., Zhang Y., Jin X., He Q., Zhang X.: Comparison of digital elevation models and relevant derived attributes. Journal of Applied Remote Sensing, vol. 11(4), 2017, 046027. https://doi.org/10.1117/1.JRS.11.046027.
  • Mahalingam R., Olsen M.J.: Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping. Geomatics, Natural Hazards and Risk, vol. 7(6), 2015, pp. 1835–1855. https://doi.org/10.1080/19475705.2015.1115431.
  • Ganas A., Pavlides S., Karastathis V.: DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology, vol. 65(3–4), 2005, pp. 301–319. https://doi.org/10.1016/j.geomorph.2004.09.006.
  • Nkono C., Féménias O., Lesne A., Mercier J.C., Demaiffe D.: Fractal analysis of lineaments in equatorial Africa: Insights on lithospheric structure. Open Journal of Geology, vol. 3(3), 2013, pp. 157–168. https://doi.org/10.4236/ojg.2013.33019.
  • Pandey P., Sharma L.N.: Image processing techniques applied to satellite data for extracting lineaments using PCI Geomatica and their morphotectonic interpretation in the parts of Northwestern Himalayan Frontal Thrust. Journal of the Indian Society of Remote Sensing, vol. 47(5), 2019, pp. 809–820. https://doi.org/10.1007/s12524-019-00962-2.
  • Papadaki E.S., Mertikas S.P., Sarris A.: Identification of lineaments with possible structural origin using ASTER images and DEM derived products in Western Crete, Greece. EARSeL eProceedings, vol. 10(1), 2011, pp. 9–26.
  • Phiri D., Simwanda M., Salekin S., Nyirenda V.R., Murayama Y., Ranagalage M.: Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, vol. 12(14), 2020, 2291. https://doi.org/10.3390/rs12142291.
  • Mallast U., Gloaguen R., Geyer S., Rödiger T., Siebert C.: Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrology and Earth System Sciences, vol. 15(8), 2011, pp. 2665–2678. https://doi.org/10.5194/hess-15-2665-2011.
  • Bruning J.N., Gierke J.S., Maclean A.L.: An approach to lineament analysis for groundwater exploration in Nicaragua. Photogrammetric Engineering and Remote Sensing, vol. 77(5), 2011, pp. 509–519. https://doi.org/10.14358/PERS.77.5.509.
  • Radaideh O.M.A., Grasemann B., Melichar R., Mosar J.: Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan. Geomorphology, vol. 275, 2016, pp. 58–79. https://doi.org/10.1016/j.geomorph.2016.09.033.
  • Casas A.M., Cortés A.L., Maestro A., Soriano M.A., Riaguas A., Bernal J.: LINDENS: A program for lineament length and density analysis. Computers and Geosciences, vol. 26(9–10), 2000, pp. 1011–1022. https://doi.org/10.1016/S0098-3004(00)00017-0.
  • Ferré E.C., Yeh E.-C., Chou Y.-M., Kuo R.L., Chu H.-T., Korren C.S.: Brushlines in fault pseudotachylytes: A new criterion for coseismic slip direction. Geology, vol. 44(5), 2016, pp. 395–398. https://doi.org/10.1130/G37751.1.
  • Kearse J., Kaneko Y.: On-fault geological fingerprint of earthquake rupture direction. Journal of Geophysical Research: Solid Earth, vol. 125(9), 2020, e2020JB019863. https://doi.org/10.1029/2020JB019863.
  • Nováková L., Novák P., Brož M., Sosna K., Pitrák M., Kasíková J., Rukavičková L., Maňák L.: The results of borehole acoustic imaging from a granite in the Jihlava District, Czech Republic: Implications for structural geological research. Journal of Geography and Geology, vol. 4(4), 2012, pp. 92–101. https://doi.org/10.5539/jgg.v4n4p92.
  • Kearse J., Kaneko Y., Little T., Van Dissen, R.: Curved slickenlines preserve direction of rupture propagation. Geology, vol. 47(9), 2019, pp. 838–842. https://doi.org/10.1130/G46563.1.
  • Lagarde J.L., Ait Ayad N., Ait Omar S., Chemsseddoha A., Saquaque A.: Plutons granitiques tardi carbonifères marqueurs de la déformation crustale. L’exemple de la Meseta marocaine. Comptes Rendus de l’Académie des Sciences Paris, vol. 309(II), 1989, pp. 291–296.
  • Lagarde J.L., Ait Omar S., Roddaz B.: Structural characteristics of granitic plutons emplaced during weak regional deformation: examples from late Carboniferous plutons, Morocco. Journal of Structural Geology, vol. 12(7), 1990, pp. 805–821. https://doi.org/10.1016/0191-8141(90)90056-5.
  • Matte P.: La chaine varisque parmi les chaines paléozoïques péri atlantiques, modèle d’évolution et position des grands blocs continentaux au Permo-Carbonifère. Bulletin de la Société Géologique de France, vol. II(1), 1986, pp. 9–24. https://doi.org/10.2113/gssgfbull.II.1.9.
  • Lagarde J.L.: Cisaillements ductiles et plutons granitiques contemporains de la déformation hercynienne de la meseta marocaine. Hercynica, vol. 1, 1985, pp. 29–37.
  • Piqué A., Michard A.: Moroccan Hercynides; a synopsis; the Paleozoic sedimentary and tectonic evolution at the northern margin of West Africa. American Journal of Science, vol. 289(3), 1989, pp. 286–330. https://doi.org/10.2475/ajs.289.3.286.
  • Saidi A.: Paléochamps de contraintes et importance de l’héritage hercynien dans la structuration du Maroc central septentrional du Permien à l’actuel. Université de Mohamed V, Rabat 1996 [thesis].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd9067d1-f477-4693-a0ad-1c5b40d113b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.