Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, an operational method for solving linear and nonlinear systems described by ordinary differential equations is presented. The construction is based on the generalized derivative in the sense of distribution theory. The approach allows the response computation without needing the use of any integral transform as in the Mikusiński operational calculus. A general description of the algorithm is done and some illustrating examples are presented. The algorithm is recursive allowing to add and remove any pole or zero contribution. The extension to nonlinear systems is done by means of the Adomian polynomials.
Wydawca
Czasopismo
Rocznik
Tom
Strony
131--139
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico
autor
- CTS-UNINOVA and Department of Electrical Engineering, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Monte da Caparica, Portugal
Bibliografia
- [1] G. Adomian, A review of the decomposition method in Applied mathematics, J. Math. Anal. Appl. 135 (1988), no. 2, 501-544.
- [2] G. Bengochea, Algebraic approach to the Lane-Emden equation, Appl. Math. Comput. 232 (2014), 424-430.
- [3] G. Bengochea, Operational solution of fractional differential equations, Appl. Math. Lett. 32 (2014), 48-52.
- [4] G. Bengochea, An operational approach with Application to fractional Bessel equation, Fract. Calc. Appl. Anal. 18 (2015), no. 5,1201-1211.
- [5] G. Bengochea and G. Lopez, Mikusinski’s operational calculus with algebraic foundations and Applications to Bessel functions, Integral Transforms Spec. Funct. 25 (2014), no. 4, 272-282.
- [6] G. Bengochea and L. Verde-Star, Linear algebraic foundations of the operational calculi, Adv. Appl. Math. 47 (2011), 330-351.
- [7] G. Bengochea and L. Verde-Star, An operational approach to the Emden-Fowler equation, Math. Methods Appl. Sci. 38 (2015), no. 18, 4630-4637.
- [8] L. Berg, General operational calculus, Linear Algebra Appl. 84 (1986), 79-97.
- [9] L. H. Dimovski, Convolutional Calculus, 2nd ed., Kluwer Academic Publishers, Dordrecht, 1990.
- [10] R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th ed., Pentice-Hall, Upper Saddle River, 2011.
- [11] I. M. Gel’fand and G. E. Shilov, Generalized Functions. Volume I: Properties and Operations, Academic Press, New York, 1964.
- [12] H. -J. Glaeske, A. P. Prudnikov and K. A. Skórnik, Operational Calculus and Related Topics, Chapman & Hall/CRC, Boca Raton, 2006.
- [13] E. Kamen and B. Heck, Fundamentals of Signals and Systems: Using the Web and Matlab, 2nd ed., Prentice Hall, Upper Saddle River, 2000.
- [14] J. Mikusinski, Operational Calculus, Pergamon Press, Oxford, 1959.
- [15] M. Ortigueira and F. Coito, System initial conditions vs derivative initial conditions, Comput. Math. Appl. 59 (2010), no. 5, 1782-1789.
- [16] Y. Péraire, Heaviside calculus with no Laplace transform, integral Transforms Spec. Funct. 17 (2006), 221-230.
- [17] M. J. Roberts, Signals and Systems: Analysis Using Transform Methods & Matlab, McGraw-Hill, New York, 2003.
- [18] L. A. Rubel, An operational calculus in miniature, Appl. Anal. 6 (1977), 299-304.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd8d96f3-8fef-45f8-8858-ec7b9eea0a46