PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility of sparker source in marine seismic exploration: data analysis and processing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sparkers are the sound source widely used in marine seismic exploration to provide high-resolution vertical sections. Sparkers are relatively simple, inexpensive, high-frequency sources. In this study, the types of noise occurring in sparker source data were analyzed and attenuated by a processing technique. Frequency-wave number (f-k) filtering is used for attenuating the linear noise. Predictive deconvolution is used for attenuating the ghost waves and bubble efects. A complete processing workflow was designed for processing the data, and the migration section was obtained. The results show that the sparker source data are capable of achieving vertical sections with very high resolution. It is suggested as a necessary technique for high-accuracy gas hydrate exploration in the South China Sea.
Czasopismo
Rocznik
Strony
1413--1418
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
autor
  • School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
  • Guangzhou Marine Geological Survey of China Geological Survey, Guangzhou 510760, China
autor
  • Guangzhou Marine Geological Survey of China Geological Survey, Guangzhou 510760, China
autor
  • National Deep Sea Center, Ministry of Natural Resources, Qingdao 266237, China
Bibliografia
  • 1. Baldock S, Masoomzadeh H, Woodburn A et al (2013) Increasing the bandwidth of marine seismic data. Petroleum Exploration Society of Australia New Resources, Melbourne, pp 55–57
  • 2. Beeson JW, Johnson SY, Goldfinger C (2017) The transtensional offshore portion of the northern San Andreas fault: fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth. Geosphere 13:1173–1206
  • 3. Brothers DS, Andrews BD, Walton M et al (2018) Slope failure and mass transport processes along the Queen Charlotte Fault, southeastern Alaska, in subaqueous mass movements and their consequences: assessing geohazards, environmental implications. In: Campbell C, Lintern G, Bobrowski P (eds) Geological Society of London Special Volume, Special Publication, p 477. https://doi.org/10.1144/sp477.30
  • 4. Conrad JE, Brothers DS, Maier KL, Ryan HF, Dartnell P, Sliter RW (2018) Right-lateral fault motion along the slope-basin transition, Gulf of Santa Catalina, southern California. In: Marsaglia KM, Schwalbach R, Behl RJ (eds) From the Mountains to the Abyss: The California Borderland as an Archive of Southern California Geologic Evolution, Special Publication 110: SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma, p 110.07. https://doi.org/10.2110/sepms
  • 5. Crocker SE, Fratantonio FD (2016) Characteristics of sounds emitted during high-resolution marine geophysical surveys. Naval Undersea Warfare Center Division-Newport, Technical Report 12,203
  • 6. Duchesne MJ, Bellefleur G, Galbraith M et al (2007) Strategies for wave form processing in sparker data. Mar Geophys Res 28:153–164
  • 7. Haeussler PJ, Armstrong PA, Liberty LM et al (2015) Focused exhumation along megathrust splay faults in Prince William Sound, Alaska. Quat Sci Rev 113:8–22
  • 8. Hill JC, Brothers DS, Craig BK et al (2017) Geologic controls on submarine slope failure along the central U.S. Atlantic margin: insights from the Currituck Slide Complex. Mar Geol 385:114–130
  • 9. Johnson SY, Cochrane GR, Golden NE (2017) The California seafloor and coastal mapping program—providing science and geospatial data for California’s State Waters. Ocean Coast Manag 140:88–104
  • 10. Jones LE (2013) High frequency enhancement of sparker sub bottom profiles with multichannel reflection processing. In: International geophysical conference and exhibition (ASEG-PESA), pp 1–4
  • 11. Kluesner J, Brothers D, Hart P et al (2018) Practical approaches to maximizing the resolution of sparker seismic reflection data. Mar Geophys Res. https://doi.org/10.1007/s11001-018-9367-2
  • 12. Kong F, Tao HE, Spence GD (2012) Application of deep-towed multichannel seismic system for gas hydrate on mid-slope of northern Cascadia margin. Sci China Earth Sci 55(5):758–769
  • 13. Liberty LM, Flinn SP, Haeussler PJ et al (2013) Mega thrust splay faults at the focus of the Prince William Sound asperity, Alaska. J Geophys Res Solid Earth 118:5428–5441
  • 14. Maier KL, Roland EC, Walton MA et al (2018) The tectonically controlled San Gabriel channel-lobe transition zone, Catalina Basin, southern California borderland. J Sediment Res 88:924–959
  • 15. Scheuer T, Oldenberg DW (1988) Aspects of time-variant filtering. Geophysics 53:1399–1409
  • 16. Sheriff RE (2005) Encyclopedic dictionary of applied geophysics. Society of Exploration Geophysicists, Tulsa
  • 17. Yilmaz O (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists, Houston
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd7d9067-cd57-4780-847c-a88d1422f293
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.