PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acidic Corrosion Behaviour of Niobium-Added Welding Overlays Fabricated by Self-Shielded Metal-Cored Wires

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Both corrosion and abrasion remove materials from some engineering components such as impact coal crusher hammers, pulverizer rings, chute liner, and rolls or molds. Intensive research has been done on improving the wear resistance of high chromium alloys, however, studies into corrosion resistance of high chromium alloys are insufficient. In order to determine the amount of ferroniobium addition in the wire to achieve the best corrosion resistance, and find out the mechanism of ferroniobium enhancing the corrosion resistance of the welding overlays, the high-Cr iron-based welding overlays with different niobium addition were fabricated by using self-made self-shielded metal-cored wires and their acidic corrosion resistance in 3.5 wt.% NaCl solution + 0.01 mol/L HCl solution were investigated by electrochemical corrosion test. The microstructure and corrosion morphology were characterized by OM, SEM, XRD and EDS. The polarization curves and values of Icorr, Ecorr and Rc indicate the corrosion resistance is at the highest with 3.6 wt.% niobium addition, and at the lowest when the niobium addition is 10.8 wt.%. The corrosion of welding overlay occurs in the matrix of microstructure. With the increase of niobium addition from 3.6 wt.% to 10.8 wt.%, the proportion of network eutectic structure in the welding overlay is increased. Up to 10.8 wt.%, the microstructure is transformed from hypereutectic structure into eutectic one, leading to a higher acceleration of corrosion rate. When niobium addition reaches 14.4 wt.%, the welding overlay is transformed into a hypoeutectic structure. The addition of niobium element consumes carbon element in the alloy, which makes the increase of chromium content in the final solidified matrix, leading to an improvement in corrosion resistance.
Twórcy
autor
  • Hefei University of Technology, School of Material Science and Engineering, Hefei 230009, China
  • Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
  • Jiangsu University of Science and Technology, School of Material Science and Engineering, Zhenjiang 212003, China
autor
  • Hefei University of Technology, School of Material Science and Engineering, Hefei 230009, China
autor
  • Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China
  • China Innovation Academy of Intelligent Equipment (Ningbo) Co., Ltd, Ningbo 315700, China
autor
  • Jiangsu University of Science and Technology, School of Material Science and Engineering, Zhenjiang 212003, China
autor
  • Jiangsu University of Science and Technology, School of Material Science and Engineering, Zhenjiang 212003, China
autor
  • Hefei University of Technology, School of Material Science and Engineering, Hefei 230009, China
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Bibliografia
  • [1] J. Pearce, T.H. Chairuangsri, T. Imurai, S. Thanachayanont Ch, Microstructure and erosion-corrosion behaviour of as-cast high chromium white irons containing molybdenum in aqueous sulfuric-acid slurry., Arch. Metall. Mater. 60 (2), 919-923 (2015). DOI: https://doi.org/10.1515/amm-2015-0230
  • [2] J.T.H. Pearce, High-chromium cast irons to resist abrasive wear, Foundryman. 95, 156-166 (2002).
  • [3] A.E. Karantzalis, A. Lekatou, H. Mavros, Microstructural modifications of as-cast high-chromium white iron by heat treatment, J. Mater. Eng. Perform. 18 (2), 174-181 (2009). DOI: https://doi.org/10.1007/s11665-008-9285-6
  • [4] E. Zumelzu, I. Goyos, C. Cabezas, O. Opitz, A. Parada, Wear and corrosion behaviour of high-chromium (14-30% Cr) cast iron alloys, J. Mater. Process. Technol. 128 (1-3), 250-255 (2002). DOI: https://doi.org/10.1016/S0924-0136(02)00458-2
  • [5] M.M. Lachowicz, M.B. Lachowicz, The mechanism of corrosion of steel 304L in the presence of copper in industrial installations, Arch. Metall. Mater. 60 (4), 2657-2662 (2015). DOI: https://doi.org/10.1515/amm-2015-0429
  • [6] A. Smołka, G. Dercz, K. Rodak, B. Łosiewicz, Evaluation of corrosion resistance of nanotubular oxide layers on the Ti13Zr13Nb alloy in physiological saline solution, Arch. Metall. Mater. 60 (4), 2681-2686 (2015). DOI: https://doi.org/10.1515/amm-2015-0432
  • [7] J.H. Lee, I.H. Oh, H.K. Park, Effects of transition metal carbides on microstructure and mechanical properties of ultrafine tungsten carbide via spark plasma sintering, Arch. Metall. Mater. 66 (4), 1029-1032 (2021). DOI: https://doi.org/10.24425/amm.2021.136419
  • [8] H.H. Tian, G.R. Addie, R.J. Visintainer, Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries, Wear 267 (11), 2039-2047 (2009). DOI: https://doi.org/10.1016/j.wear.2009.08.007
  • [9] K.A. El-Aziz, K. Zohdy, D. Saber, H.E.M. Sallam, Wear and corrosion behavior of high-Cr white cast iron alloys in different corrosive media., J. Bio. Tribo. Corros. 1, 25 (2015). DOI: https://doi.org/10.1007/s40735-015-0026-8
  • [10] X.H. Tang, R. Chung, D.Y. Li, B. Hinckley, K. Dolman, Variations in microstructure of high chromium cast irons and resultant changes in resistance to wear, corrosion and corrosive wear, Wear 267 (1), 116-121 (2009). DOI: https://doi.org/10.1016/j.wear.2008.11.025
  • [11] A. Wiengmoon, J. Pearce, T. Chairuangsri, Relationship between microstructure, hardness and corrosion resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.% Cr high chromium cast irons, Mater. Chem. Phys. 125 (3), 739-748 (2011). DOI: https://doi.org/10.1016/j.matchemphys.2010.09.064
  • [12] J.F. Gou, Y. Wang, X.W. Li, Y.F. Zhou, Effect of rare earth oxide nano-additives on the corrosion behavior of Fe-based hardfacing alloys in acid, near-neutral and alkaline 3.5 wt.% NaCl solutions, Appl. Surf. Sci. 431, 143-151 (2017). DOI: https://doi.org/10.1016/j.apsusc.2017.06.203
  • [13] G. Karafyllias, A. Galloway, E. Humphries, The Effect of low pH in erosion-corrosion resistance of high chromium cast irons and stainless steels, Wear 420-421, 79-86 (2019). DOI: https://doi.org/10.1016/j.wear.2018.11.021
  • [14] K.Y. Lee, S.H. Lee, Y. Kim, H.S. Hong, Y.M. Oh, S.J. Kim, The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys, Wear 255 (1-6), 481-488 (2003). DOI: https://doi.org/10.1016/S0043-1648(03)00155-8
  • [15] Q. Wang, X. Li, Effects of Nb, V, and W on microstructure and abrasion resistance of Fe-Cr-C hardfacing alloys, Int. J. Sport Exer. Ps. 5 (2), 256-258 (2010). DOI: https://doi.org/10.1080/1612197X.2007.9671827
  • [16] G.C. Coelho, J.A. Golczewski, H.F. Fischmeister, Thermodynamic calculations for Nb-containing high-speed steels and white-castiron alloys, Metall. Mater. Trans. A 34 (9), 1749-1758 (2003). DOI: https://doi.org/10.1007/s11661-003-0141-x
  • [17] Q. Li, Y. Zhang, Y. Zhang, H. Liu, H. Ren, Y. Zhong, X.F. Huang, W. Huang, Influence of Sn and Nb additions on the microstructure and wear characteristics of a gray cast iron, Appl. Phys. A. Solids. Surf. 126, 282 (2020). DOI: https://doi.org/10.1007/s00339-020-03468-8
  • [18] A. Cruz-Crespo, R. Fernández-Fuentes, A.V. Ferraressi, R.A. Gonçalves, A. Scotti, Microstructure and abrasion resistance of Fe-Cr-C and Fe-Cr-C-Nb hardfacing alloys deposited by S-FCAW and cold solid wires, Rev. Soldagem. Inspecao. 21 (3), 342-353 (2016). DOI: https://doi.org/10.1590/0104-9224/SI2103.09
  • [19] F. Sadeghi, H. Najafi, A. Abbasi, The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy, Surf. Coat. Technol. 324, 85-91 (2017). DOI: https://doi.org/10.1016/j.surfcoat.2017.05.067
  • [20] D.S. Liu, R.P. Liu, Y.H. Wei. Effect of titanium additive on microstructure and wear performance of iron-based slagfree self-shielded flux-cored wire, Surf. Coat. Technol. 207, 579-586 (2012). DOI: https://doi.org/10.1016/j.surfcoat.2012.07.078.
Uwagi
This work is supported by China Postdoctoral Science Foundation Funded Project (Grant No. 2016M601753), Natural Science Foundation of Jiangsu Province (Grant No. BK20201453), Anhui Provincial Natural Science Foundation (Grant No. 2208085ME135), and Graduate Research and Innovation Projects of Jiangsu Province (Grant No. KYCX21_3450).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd7a866f-3495-445a-8adb-cdfa3c519b6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.