PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of separation of Mn(II), Co(II), and Ni(II) by oxidative precipitation between chloride and sulfate solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In hydrometallurgy, precipitation would be easier and simpler than solvent extraction as a separation operation. In this work, the separation performance of Co(II), Mn(II) and Ni(II) by oxidative precipitation was investigated. For this purpose, NaClO was employed as an oxidizing agent and the separation behavior of the three ions was compared between chloride and sulfate solutions by varying some factors such as the dosage of NaClO, solution pH and reaction temperature. By controlling the molar ratio of NaClO to Mn(II), Mn(II) were easily separated as MnO2 by oxidative precipitation from both chloride and sulfate solutions. At the same experimental conditions, precipitation percentage of Co(II) from chloride solution was higher than that from sulfate solution, which can be ascribed to the stronger tendency of Co(II) to form complexes with chloride ion than with sulfate ions. Addition of NaCl to sulfate solution and oxidative precipitation at high temperature enhanced the precipitation percentage of Co2O3 and thus separation degree between Co(II) and Ni(II) was improved. Under the optimum conditions, MnO2 and Co2O3 powders with 99.9% purity were completely recovered by oxidative precipitation from chloride solution. By contrast, the purities of the MnO2 and Co2O3 thus recovered from sulfate solution were only 76 and 91%, respectively. Our results indicated that chloride solution would be more effective than sulfate solution in separating Mn(II) and Co(II) by oxidative precipitation with NaClO. Therefore, the use of chloride-based leaching solutions such as HCl and FeCl3 might be better for the leaching medium of spent lithium-ion batteries.
Rocznik
Strony
art. no. 183029
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
  • Department of Advanced Materials Science & Engineering, Mokpo National University, Chonnam 534-729, Korea
  • Faculty of Biological, Chemical and Food Technology, Can Tho University of Technology, Can Tho City 900000, Vietnam
  • Department of Advanced Materials Science & Engineering, Mokpo National University, Chonnam 534-729, Korea
Bibliografia
  • AL SULTAN, M. S., BENLI, B. 2023. Recent sustainable trends for e-waste bioleaching. Physicochem. Probl. Miner. Process. 59.
  • COOK, W. G., OLIVE, R. P. 2012. Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions. Corros. Sci. 58, 284-290.
  • DIEBLER, H. 1983. E. Högfeldt (Ed.): Stability Constants of Metal‐Ion Complexes, Part A: Inorganic Ligands, Vol. 21 aus: IUPAC Chemical Data Series. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt 1982. 310 Seiten.
  • GOLMOHAMMADZADEH, R., FARAJI, F., RASHCHI, F., 2018. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resour. Conserv. Recycl. 136, 418-435.
  • JENA, K. K., ALFANTAZI, A., MAYYAS, A. T. 2021. Comprehensive review on concept and recycling evolution of lithium-ion batteries (LIBs). Energy Fuels. 35, 18257-18284.
  • JOULIÉ, M., LAUCOURNET, R., BILLY, E. 2014. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources. 247, 551-555.
  • KANG, D. H. P., CHEN, M., OGUNSEITAN, O. A. 2013. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47(10), 5495-5503.
  • KOSEOGLU, H., DELIKANLI, N. E., GONULSUZ, E., AYDIN, M. T., SARDOHAN KOSEOGLU, T., YIGIT, N. O., KITIS, M. 2022. Copper recovery by cementation process from polymeric membrane concentrate flows and sensor integration. Environ. Sci. Pollut. Res. 29, 50256-50270.
  • KU, H., JUNG, Y., JO, M., PARK, S., KIM, S., YANG, D., KWON, K. 2016. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J. Hazard. Mater. 313, 138-146.
  • LEE, M. S., OH, Y. J. 2005. Chemical equilibria in a mixed solution of nickel and cobalt chloride. Mater. Trans. 46, 59-63.
  • LEI, S., SUN, W., YANG, Y. 2022. Solvent extraction for recycling of spent lithium-ion batteries. J. Hazard. Mater. 424, 127654.
  • LI, B., LI, Q., WANG, Q., YAN, X., SHI, M., WU, C. 2022. Deep eutectic solvent for spent lithium-ion battery recycling: Comparison with inorganic acid leaching. Phys. Chem. Chem. Phys. 24(32), 19029-19051.
  • LIN, X., BURNS, R. C., LAWRANCE, G. A. 1998. Effect of electrolyte composition, and of added iron (III) in the presence of selected organic complexing agents, on nickel (II) precipitation by lime. Water Res. 32, 3637-3645.
  • LIU, C., LIN, J., CAO, H., ZHANG, Y., SUN, Z. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Cleaner Prod. 228, 801-813.
  • LU, Q., JIANG, H., XIE, W., ZHANG, G., HE, Y., DUAN, C., ZHANG, J., YU, Z. 2021. Improvement of leaching efficiency of cathode material of spent LiNixCoyMnzO2 lithium-ion battery by the in-situ thermal reduction. Physicochem. Probl. Miner. Process. 57(2), 70-82.
  • LIU, W., MIGDISOV, A., WILLIAMS-JONES, A. 2012. The stability of aqueous nickel (II) chloride complexes in hydrothermal solutions: Results of UV–Visible spectroscopic experiments. Geochim. Cosmochim. Acta. 94, 276-290.
  • MESHRAM, P., MISHRA, A., SAHU, R. 2020. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids–A review. Chemosphere. 242, 125291.
  • NGUYEN, T. T. H., LEE, M. S. 2023. Separation of base metals from reduction smelt-alloy of spent lithium-ion batteries by ferric sulfate leaching, cementation, solvent extraction and oxidative precipitation. Hydrometallurgy. 215, 105969.
  • NGUYEN, V. N. H., LEE, M. S. 2020. Separation of Co (II), Cu (II), Ni (II) and Mn (II) from synthetic hydrochloric acid leaching solution of spent lithium ion batteries by solvent extraction. Physicochem. Probl. Miner. Process. 56, 599-610.
  • ORUE, B. P., BOTELHO JUNIOR, A. B., TENÓRIO, J. A. S., ESPINOSA, D. C. R., BALTAZAR, M. D. P. G. 2021. Kinetic study of manganese precipitation of nickel laterite leach based-solution by ozone oxidation. Ozone: Sci. Eng. 43(4), 324-338.
  • OTHMAN, E. A., VAN DER HAM, A. G., MIEDEMA, H., KERSTEN, S. R. 2020. Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate]. Sep. Purif. Technol. 252, 117435.
  • POHL, A. 2020. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air, Soil Pollut. 231(10), 503.
  • RAUTELA, R., YADAV, B. R., KUMAR, S. 2023. A review on technologies for recovery of metals from waste lithium-ion batteries. J. Power Sources. 580, 233428.
  • SINGER, P. C., RECKHOW, D. A. 1999. Chemical oxidation. Water Qual. Treat. 5, 12-1.
  • SPEIGHT, J., 2005. Lange's handbook of chemistry. McGraw-Hill Education.
  • TAWONEZVI, T., NOMNQA, M., PETRIK, L., BLADERGROEN, B. J. 2023. Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis. Energies, 16(3), 1365.
  • TRAN, T. T., MOON, H. S., LEE, M. S. 2022. Co, Ni, Cu, Fe, and Mn integrated recovery process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys. Miner. Process. Extr. Metall. Rev. 43, 954-968.
  • WEN, J. X., LEE, M. S. 2022. Selective extraction of Cu (II) from the hydrochloric acid leaching solution of spent lithium-ion batteries by a mixture of Aliquat 336 and LIX 63. Korean J. Met. Mater. 60(10), 751-759.
  • WATTERS, J.I., DEWITT, R., 1960. The complexes of nickel(II) ion in aqueous solutions containing oxalate ion and Ethylenediamine1. J. Am. Chem. Soc. 82 (6), 1333–1339.
  • XU, J., THOMAS, H. R., FRANCIS, R. W., LUM, K. R., WANG, J., LIANG, B. 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources. 177, 512-527.
  • YAO, Y., ZHU, M., ZHAO, Z., TONG, B., FAN, Y., HUA, Z. 2018. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review. ACS Sustainable Chem. Eng. 6, 13611-13627.
  • ZHANG, P., YOKOYAMA, T., ITABASHI, O., SUZUKI, T. M., INOUE, K. 1998. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47, 259-271.
  • ZHANG, W., SINGH, P., MUIR, D. 2002. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel. Hydrometallurgy, 63(2), 127-135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd75e1bb-877d-41f6-92a2-c7840f843144
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.