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A C++ Shared-Memory IPC Framework
for High-Throughput Data Acquisition Systems

Rolando Inglés, Mariusz Orlikowski, and Andrzej Napieralski

Abstract—High-Throughput Data Acquisition Systems are an
essential part in many scientific experiments, and the processing
of the large amount of data, represents a challenge in designing
systems capable of managing such volume of data. Owing to the
nature of this type of experiments, the processes responsible for
gathering the data from devices that measure real-world
phenomena, and those processes in charge of distributing the
data to monitoring and/or controlling systems, shall communicate
with accuracy and reliability. By running those processes
concurrently in a multi-processor computer system, such
requirements of accuracy and reliability can be achieved. In this
paper, we present the design of a C++ framework, which
implements a ring-buffer by using shared-memory as a fast
mechanism of data communication among processes. Likewise,
the framework controls the access to data in the shared ring-
buffer by implementing inter-process synchronization objects in
shared-memory. The effectiveness of the proposed solution has
been evaluated by evaluating the latency time from when a new
data is written into the shared ring-buffer and the longest instant
when such a data is gathered. After the experimental test, the
results show that it is possible to develop a C++ framework for
helping programmers to create data acquisition system when
a high-throughput data-stream is involved, getting suitable
performance by using shared-memory.

Index Terms—inter-process communication; ring-buffer;
data acquisition system; high-throughput; condition variables;
futex; atomic variables.

I. INTRODUCTION

HE process of monitoring real-world phenomenas by

means of specialized devices produce a large amount of
data, such Data Acquisition (DAQ) process, as it is depicted in
the Figure 1, it is defined as the process of mesuaring real-
world phenomena and transform such measurements into
a standardized signal format that can be processed by
monitoring applications and control systems [1] [2].
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Fig. 1. Data acquisition process.
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Such complex monitoring systems require to spread the
adquired data toward different sub-systems quickly and with
the appropiate of reliability and safety. As seen in Figure 2,
the process of gathering the raw data from hardware devices
and propagation of them toward the specialized sub-systems
of control and archiving, is considered in the ITER project as
Data Acquisition System.

The experimental assesment contained in this paper is
focused on presenting an C++ Shared-Memory Ring-Buffer
Framework. Such solution has been designed based on the
ITER CODAC framework [3]; those specifications set forth
the design of a generic C++ framework to help to
programmers with the developing of diagnostics, monitoring
and control applications for the TOKAMAK device [4]
referenced as experimental fusion device from this point
forward.

One particular use-case for monitoring the experimental
fusion device implies the management of data in the form of
images; these images are captured by high-speed cameras and
acquired by using high-speed digital interfaces, e.g., Camera
Link, PCle or GbE [5]. Subsequently, such images are
digitized through the use of frame grabber boards [6]. Since
the images are used for monitoring and controling the
experimental fusion device, the images must be transferred in
the fastest manner posible toward the specialized sub-systems,
particularly those sub-systems where the images are processed
in the precise moment when they are grabbered, these sub-
systems are represented in the Figure 2 as Critical Systems.
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Fig. 2. Monitoring process data workflow

In order to achieve an efficient mechanism to transfer data
between process responsible to gather data from the hardware
devices and those processes responsible to spread the data
toward the monitoring and controlling sub-systems, several
methods has been proposed in the past [7] [8] [9]. In this
paper, the shared-memory approach has been adopted because
all the independent system processes involved in the DAQ and
the Control System, require a robust inter-process
communication (IPC) procedure among them.
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The shared-memory approach is considered the fastest [IPC
mechanism, since only one copy of the data lies in the
memory and it is available for all process once the shared-
memory segment is mapped properly for each process [10].
Certainty, the primary envisioned use for shared-memory it
was to provide high-speed inter-process communication
among cooperating processes [11] [12] [13].

To achieve high-rate transfer in the dissemination of the
data to the processing sub-systems, each process bound to
each sub-system must to run concurrently and ideally running
is its own CPU [14]. Notwithstanding, concurrent access to
specific shared-memory segment it requires to use special
synchronization techniques to control the access to the shared
data and thus avoid the occurrence of race-conditions [15] [16].

II.  THE DATA ACQUISITION SYSTEM

A. The Raw Data Source

One of the sytems for monitoring the experimental fusion
device is by means of high-speed cameras, specificlly the
EoSens® 3CL Full CL MC3010 model [3]. The Figure 3
depictes the information provided by the manufacturer related
with the maximun frame rate for a given resolution [17].
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Fig. 3. Frameset factory profiles of EoSens® 3CL Full CL MC3010 high-
speed camera [17]

Taking into account the above-mentioned information, the
cameras are capable of producing 710 Mbytes of raw data
when are configured in the highest resolution 1680x1710
pixels. And besides, according to thechnical documentation
the cameras are able to produce up to 6815 frames per second
when the reduced resolution is set [17].

B. The Control System

The Control System executes the process for controlling
and monitoring the operation of the power-generator [3]. Such
controlling tasks are dependent on the physical time when
results are produced, for this reason the DAQ and Control
System operate in a real-time environment [18]. To conduct
the controlling/monitoring tasks, the acquired images must be
sent toward two sub-systems namely, Data Archiving and
Synchronization System.

The block diagram in the Figure 4 outlines how the
acquired data is acquired and transferred to the two above
mentioned sub-systems.

Data Acquisition System CONTROL SYSTEM

Data
;ONSUME

Fig. 4. Data acquisition system block diagram

The Data Archiving sub-system is devoted for persistent
data storage, the storing tasks undertaken by this sub-system
are considered no critical, since there is no specific time when
they must be completed mainly because they are not attached
with the control operations undertaken over the experimental
fusion device. Nonetheless, the operations effected by the
Synchronization System are extremely critical for the process
of controlling the experimental fusion device [18].

In order to monitor the effective functioning of the
experimental fusion device, the sensed variables must be
measured continuously and the data proceeding from these
capturing procedures must be processed promptly. This with
the objective of supporting the early detection of any fail in
the operation of the whole-system. As a result of this fact, a
hundred percent of accuracy of the data transfer it is
mandatory. This means that for the critical sub-systems where
images are captured, all acquired images must be transferred
pertinently to detect any failure in real-time. Likewise a
hundred percent of reliability is needed to evaluate
permanently the quality and consistency of the transferred
data. The developed Data Acquisition System must be able to
fulfill these requirements by transferring the frames from the
cameras toward the Control System in the same rate that they
are produced.

C. Data Acquisition System Operation

The Figure 4, presented above, outlines a generic schema
of the Data Acquisition System. One producer and two
consumers form the depicted schema. The producer process is
in charge of gathering the message from the source device,
and ask for an available slot in the shared ring-buffer, if there
is no any available slot, the producer process become into
waiting state until some signal is received from the consumers.
The meaning of such signal is connected with the fact that
there is room for a new incoming data.

The consumer processes run independently of one another
and the producer process. Ideally and directly linked with the
operating system scheduler algorithm, each consumer process
should run in its own CPU.

Specifically, one consumer is aimed to manage complete
data messages and transfer them toward the archiving sub-
system. In addition, the other consumer process is in charge of
managing the synchronization data to confirm the data
accuracy of each event.

D. The Transferred Data

The images captured by the high-speed cameras are
grabbed by the producer process and placed them into the
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shared ring-buffer, one per slot. Each image has by definition
the TIFF standardized format [19], what it means is that each
image is equivalent to the intricate pair meta-data + raw-data.
The raw-data constitute the image itself and the meta-data
represents the identification of each frame named image-
header.

III. RELATED WORKS

An important component of all modern operating systems
is the implementation the well-defined inter-process
communication (IPC) mechanisms, both for communicating
data among processes and for synchronizing the access to the
data itself.

Notwithstanding, for the rapid developing of applications
where inter-communication among processes is required, it is
necessary a higher level of abstraction in order to encapsulate
the low-level calls of the operating related with the services of
shared-memory and IPC. This is the principal reason for
developing libraries that enclose the details of the low-level
operating systems calls and to provide a user-friendly
(developer) interface that meets with applications requirements
[20]. Hereafter, some libraries are described briefly.

The FastFlow is a C++ framework for parallel processing
advocating high-level and pattern-based parallel programming
[21]. This framework has been developed to provide a parallel
programming abstraction and simplify the development of
multi-core platforms. Even though is a complete solutions, it is
multi-threading oriented, and one the requirements to develop
the DAQ for the power generator is to use independent
processes.

The ADAPTIVE Communication Environment (ACE) is a
toolkit that implements patterns for communication software
[22]. This framework is object-oriented and aimed to develop
network applications involving concurrency and inter-process
communication. However, although is a complete solution
based on C++, object-oriented and with IPC interfaces, the
main disadvantage is that it is based on Microsoft Windows ®
inter-process communication technology, and the high-
performance DAQ must be based on Linux Operating System.

The Dynamic Shared-Memory Allocator (DSMA) has been
developed to provide IPC mechanisms to ensure
communication, data transfer and synchronization among
different processes [23]. This solution is based on the use of
virtual-memory paging mechanism, which is implemented in
most operating systems and allows using a virtual-memory
space larger than the available physical system memory.
While this solution is simple and intuitive, it also relies on the
multi-threading technology, which it is no suitable with the
requirements of the DAQ.

IV. PROPOSED SOLUTION
A. General Overview

Notwithstanding the use-case presented in this paper is
related with high data-stream production by high-speed
cameras, the C++ framework has the capacity of managing
generic data types by using the C++ templates approach. This
means that in order to create an application software based on
the framework, the programmers must declare and create an

object of the producer and consumer classes specifying the
data-type as a template parameter. Indeed, specified data-type
is the expected data to be transferred among the processes.

Three main classes compose the framework, as follows:
the first class is in charge of managing the shared-memory
segment for a given data-type whether data itself or an IPC
synchronization objects. The second one, named channel,
implements different forms of communication among
processes by using synchronization-objects. Finally, the third
class implements a ring-buffer data-structure and includes the
algorithms of reading and writing from and into this shared-
memory data-structure.

B. The Logical-Design

The Figure 5 presents schematically the logical structure of
the framework in accordance how the components work. The
synchronization objects are encapsulated in a series of classes,
which place such the IPC in shared-memory. This means that
each synchronization object is allocated in shared-memory
making it accessible for all processes that have mapped such
shared-memory segment.
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Fig. 5. C++ shared-memory ring-buffer logical design

Since by design the framework is oriented to provide the
appropriate interfaces for developing final multi-process
monitoring applications, all the classes have been developed
using C++ templates. Concretely the shared-memory resource
class allows creating shared synchronization objects and the
specific message data type to be transferred as is shown in the
Figure 6.
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shmf resource fd (-1),
shmf_resource_name_cp_res_m_ptr)
{
}
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protected: -ﬁ
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Fig. 6. Shared-memory class interface.

Additionally, it is important to underline that for this paper
the use-case is oriented to evaluated the effectiveness of the
framework when high-speed cameras are used. The data
transferred among process were format meta-data + raw-data
as has been outlined previously.
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C. The Physical Design

The Figure 7 details the relationship among the classes that
forms the framework. All of them use templates making
possible to share any synchronization object among processes
and to communicate any data as well. The framework is
designed over the classes framework is designed over three
base classes, namely shmf resource t (shared memory
resource), shmf channel_t (channel) and shmf proc t
(process).

Fig. 7. C++ Shared-memory ring-buffer physical design

The framework provides two classes as interfaces to
developing complete monitoring applications. In a typical
application, the program responsible for grabber the data from
monitoring devices and populate the shared ring-buffer with
such data, should create an object of the type shmf_producer_t
(producer) and any program which is going to grabber data
from the shared ring-buffer should create an object of the type
shmf_consumer_t (consumer).

V. EXPERIMENTAL EVALUATION

A. The Testing Enviroment

The evaluation has been performed in a system with
sixteen CPUs Intel® Xeon® CPU C5549 @ 2.53GHz, 8192
KB of cache size running the operating system Red Hat
Enterprise Linux Workstation release 6.5 based on the Linux
kernel version 2.6.32-431.20.3.e16.x86_64. Furthermore, the
system is equipped with 24GB of RAM memory.

This Linux distribution is provided with the gcc (GCC)
4.4.720120313 (Red Hat 4.4.7-4) compiler and all source code
has been compiled using the flag -O3 to take advantage of all
the optimization improvements provided by this compiler.

The data grabbing process has been simulated by means of
a data file produced by the cameras, which it was mapped into
memory in order to make the data accessible during the whole
experiment in the fastest way available. It is important to point
out that the experiment was conducted by using only 6815
frames from the data file, which corresponds to the cameras
resolution setting of 200x200 pixels.

B. The Timing Process

In accordance with the requirements stated by the project
for which this research has been conducted, the data should be
taken from a shared-memory segment to simulate the frame
production from the cameras. This has been achieved by
mapping the file into memory with the mapping memory
mechanism provided by all of *NIX like operating systems.

Following the execution logic of the timing algorithm
depicted in Figure 8, the producer process maps the sample
data file into memory by means of mmap system call [24].
Then each frame is read sequentially and if there is room in
the shared ring-buffer for allocate the new read frame, the
available slot is fills with the latest read frame. Before pushing
the new message in the shared ring-buffer, each message is
identified with an integer number to provide a control method
to calculate latency and to checking the accuracy of the all
message in the appropriate sequence.
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Fig. 8. Timing algorithm

The sub-routine START EVENT TIMING is executed just
before the event is pushed into the next available slot in the
shared ring-buffer. Internally the start measurement time is
gathered in this sub-routing by calling the system function
clock_gettime(CLOCK_REALTIME,  &timespec),  where
CLOCK REALTIME refers to the system-wide real-time
clock and &timespec to the data structure where the clock
value are stored.

In the meantime and concurrently, the consumer processes
check if there is a new data arrival in the shared ring-buffer to
be gathered. If any, the consumer process takes the message
and the sub-routine END EVENT TIMING is called, which
implies to calling the clock_gettime system function in order
to take the stop transmission time for a specific message.

When the producer process reach the end of the input file,
it sets the end-of-transmission (EOT) flag into the next slot
and it dumps the gathered timing data into a binary file.
Similarly, when the consumer processes detect the EOT flag,
each consumer dumps the stop time snapshots into a separated
binary file.

The producer process is responsible to close all shared
resources created during the timing process, for this reason,
the producer process must wait for the appropriate ending of
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all consumer processes. The consumer processes notify the
producer about the last message has been reached by means of
setting the EOT flag.

C. The Timing Data Processing

The timing process was executed for one million of
message transmitted and with different number of slots for the
shared ring-buffer, beginning with 256 and being increased by
twice up to 8192 slots.

The next stage is to process the timing files in batch mode
by verifying the correspondence of each measurement by
using the identification of each message. The start time is
subtracted from each stop time and the greatest difference is
taken as the latency time for the message under consideration.
The results analysis is based on this latency time calculation.

VI. RESULTS

A. IPC Mechanism Comparison

By means of the effectiveness rates reported in Table I it
can be established that by using the batch-consuming method
have an important impact for the improvement of the
performance. This is explained by the fact that the consumers
processes become into wait mode only when the first unread
slot in the ring-buffer is reached. By contrast, with the per-slot
method every slot in the ring-buffer is checked during the
consuming process. The column No. Slots represents the
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can noticed that by increasing the number of slot do not make
an impact in the reduction of latency itself.

TABLE L
EFFECTIVENESS RATES OF C++ SHARED RING-BUFFER
" PER-SLOT BATCH MODE
Slots | pPOSIX | FUTEX E’?J I(I)_'\'I/'I—II(I:\I POSIX | FUTEX ;J ICI)_'\'I{I-II(I:\I
256 92.74% | 92.39% 99.64% 98.49% | 81.75% 99.66%
512 62.66% | 97.78% 96.37% 98.57% | 92.15% 99.28%
1024 | 86.33% | 98.25% 68.41% 97.59% | 62.98% 98.67%
2048 | 67.00% | 88.77% 70.24% 98.19% | 92.45% 98.15%
4096 | 57.30% | 84.10% 71.64% 96.49% | 95.72% 98.22%
8192 | 14.71% | 85.80% 72.04% 96.42% | 83.77% 98.79%
B. Latency

The Figure 9(f) reflects the latency measurements for the
shared ring-buffer, which use atomic built-in functions. This
approach reports the expected behavior for a message latency
because the 94% of the messages were sent in two hundred
nanoseconds or less. Furthermore, this behavior is constant for
all configurations of slots in the ring-buffer evaluated.
Nevertheless, the same approach but signaling by per-slot does
not produce suitable results as is depicted in the Figure 9(e).
Finally, by using the batch consuming approach incorporates a
substantial enhancement aside of the synchronization method
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Fig. 9. Latency measurements.
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C. CPU-Usage

The Figure 10 reflects the best CPU usage for all of
experiments conducted during the approaches evaluation.
When condition-variables are used as mechanism of signaling,
the CPU usage average is 15% as is depicted in the Figure
10(a). By using the same signaling mechanism but with batch
consuming mode, an improvement in the CPU usage were
reached as illustrates the Figure 10(b). Nevertheless, an
unexpected behavior was presented when 256 slots were used
in the ring-buffer.

Concerning with the CPU usage associated with the
FUTEX signaling mechanism, the Figure 10(c) presents a
steady CPU usage around of 16% and 17% for the consume of
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data in batch mode as illustrates the Figure 10(d). Both results
are similar except a suddenly increase for 512 slots in
batch-mode.

The CPU usage for atomic-variables presented in Figure
10(e) reflects an expected behavior since the atomic-variable
do not provide an waiting mechanism associated with the
operating system, it means that an infinite loop is used for
waiting for the expected value; hence, the substantial increase
in the CPU usage reaching the 20%. The Figure 10(f) presents
similar CPU usage when the ring-buffer is consumed in batch
mode, meaning that there was no a decrement in the CPU
usage as expected.
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Fig. 10. CPU usage.

VII. CONCLUSIONS

In this paper, the experimental evaluation for inter-process
communication for high-throughput data acquisition systems
was discussed. Our proposed C++ framework design was
evaluated by using POSIX condition-variables, FUTEXES and
atomic-variables as IPC mechanisms, Likewise, the framework
implements two different algorithms of controlling the manner
to settle when the producer process can publish a new data and
when the consumer processes can grab such data.

Based upon the experimental results, the use of atomic-
variables is a feasible technique for the synchronization of
processes when shared-memory is used for transferring data

among them. Notwithstanding, in order to obtain better results,
the consumer processes should use a batch mode for read
the new arrivals placed in the shared ring-buffer. With this
approach, significant amount of waiting time is saved because
there is no over checking if new data has been published.

It is important underline that the use of POSIX condition-
variables and FUTEX are not suitable with the requirements
of the project. In the case where high-rate data transfer is
required, the use of atomic variables is recommended, but
a high CPU usage must be taken into consideration.

Clearly additional IPC mechanism should be evaluated in
order to establish which can manage latency levels similar to
atomic variables but with a moderate usage of CPU.
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The research conducted in this paper, is the start point for
developing a solution that fit with the 100% of accuracy
required and that incorporates the 100% of reliability of
messages transferred.
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