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Abstract

A new method of estimating the scale and shape parameters of the Weibull distribution is presented.
According to this method, a Weibull distributed time-to-failure (TTF) of a test itemis measured mtimes.
It undergoes a minimal repair after each of the first m-1 failures, and is put out of use after the m-th
failure. This procedure is repeated n times. Based on m TTFs of one test item, which are neither inde-
pendent nor identically distributed (11D), the maximum likelihood estimators (MLE) of the scale and
shape parameters, called m-sample estimators, are obtained. The accuracy of the m-sample estimators
islow, however, it can be improved by using the mean values of their n 11D realizations as more precise
estimators. Thelatter are called n-m-sampl e estimator s, have the same biases as the respective m-sample
ones, but their variances are n times smaller. Interestingly enough, the n-m-sample estimators of the
scale and shape parameters, as well as their biases, are given by relatively smple explicit formulas.
This is somewhat unexpected in view of the fact that the standard MLE of the shape parameter, based
on 11D TTFs of non-repairable test items, is obtained from an equation that cannot be solved anal yti-
cally.

1. Introduction the random sample. Such an approach is pursued

The current chapter deals with the problem of es- in (Almazeh & lsmal, 2021, Alizadeh e d.,

timating the scale and shape parameters of the
Weibull distribution. This topic has been thor-
oughly investigated by multiple statisticians
(Almazah & Ismail, 2021; Chikr el-Mezouar,
2010; Dodson, 2006). Weibull estimation has
many practical applications demonstrated, inter
dia, in (Evans et d., 2019; Lel, 2008; Wu et dl.,
2021). Nevertheless, a new method, stemming
from the reliability theory, has been developed
and is presented here. It is awell-known fact that
the time-to-failure (TTF) of many technical de-
vices (or their components) is a Weibull distrib-
uted random variable. Therefore, in order to esti-
mate its parameters, the usua procedure is to
measure the TTF’s of a number of test items, and
calculate the required estimates from the values of

2015; Wu et dl., 2021), to name afew. Sometimes,
due to restrictions imposed on the sampling time,
only censored data are available. Weibull estima-
tion with such data is discussed in (Alkutubi &
Ali, 2011). No matter whether the sampleis com-
plete or censored, the standard procedure has one
essential disadvantage — if failed objects are no
longer usable then alarge number of testitems are
needed in order to achieve high estimation accu-
racy, which may lead to unacceptable cost. How-
ever, if thetest items are repairable, then a differ-
ent approach can be used to reduce this cost. Ac-
cording to the proposed method each item under-
goes m— 1 minimal repairs, where the i-th repair
follows the i-th failure, 1<i<m-1, and is put
out of use after the m-th failure. It is natural for m
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to be the minimum number of failures that one
tested object can survive; usualy mis not large.
The above procedure is repeated n times, which
amountsto destructivetesting of nitems. Let t;; be
the i-th operation period of the j-th item, i.e. the
time elapsed between the (i — 1)-th repair and the
i-th failure of thisitem, 1 <i<m, 1<) <n(theO-
th repair takes place when a new item is put into
operation). The time periods tj, 1<i<m,
1<) <n, congtitute a random sample composed
of nvectorsof length m, where the j-th vector con-
tains successive operation periods for the j-th
item. Based upon the collected data, and the ap-
propriately constructed estimators, the sought pa-
rameters can be evaluated. Following this scheme,
the required estimation accuracy can be reached
for the number n significantly smaller than in the
case of anon-repairabletest item that becomesun-
usable after the first failure.

The chapter is organized as follows. In Section 2
the notation used in the chapter is defined. Sec-
tion 3 is areminder on the standard MLEs of the
Weibull distribution parameters, based on multi-
plei.i.d. redizations of a Weibull distributed r.v.
In Section 4 the MLEs of the scale and shape pa-
rameters of the Weibull distribution, based on a
sequence of m—1 minima repairs, are con-
structed. It is then explained how the expected
values of those estimators can be approximated
using n independent test items. In Section 5 the
sought parameters are expressed in terms of the
expected values of the respective estimators. The
derived formulas allow to calculate, in a smple
way, the biases of the estimators constructed in
Section 3. Finally, Section 6, summarizes the ob-
tained results and indicates topics for further re-
search.

The proposed method allows to express the MLE
of the scale and shape parameters in analytical
form. These estimators occur to be biased, but
their biases can also be computed analytically.
Thus, the newly developed method of estimating
the Weibull distribution parameters is based
solely on analytical formulas. For comparison, the
standard MLE estimator of the shape parameter,
using an 11D sample obtained from alarge number
of test items, is derived from an equation that can-
not be solved analytically.
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2. Notation

e CDF - cumulative distribution function,

e MGF - moment generating function,

e MLE — maximum likelihood estimator/estima-
tion,

e PDF — probability density function,

e TTF — time-to-failure (a continuous, nonnega-
tive random variable),

e r(t) —failure (hazard) rate;

i.e. r(t) =f (t)/[1-F(t)], wheref (t) and F(t) are
the PDF and CDF of the TTF under considera-
tion,

e i.i.d. — an abbreviation meaning independent
and identically distributed,

e r.v.— an abbreviation meaning random varia-
ble,

e Ti,...,Tm— the sequence of successive TTFs of
a repairable item subjected to m— 1 minimal
repairs following the first m— 1 failures of this
item,

e S,...,.Sn— moments of successive failures of
areparableitem,i.e. § =Ti+...+T;, 1 <i<m,

e m-sampleestimator —the MLE based on the se-
guence of m— 1 minimal repairs performed on
oneitem (MTTFs),

e n-msample estimator — the MLE based on n
sequences of m— 1 minimal repairs performed
on n independent items (n-m TTFs).

3. Standard MLEsbased on multiplei.i.d.
realizations of Weibull r.v.

The PDF of aWeibull r.v. with the scale and shape
parameters A and «is given by

f(@) = 2a(at)* ! exp[—(At)?] N

Thus, the following formula defines the PDF of a
vector of N i.i.d. Weibull r.v.:

fN(tlr e ty) = ;yzlf(tj)

= )" T, (26) " exp[— (A1) &)

Thelogarithm of fy (¢4, ..., ty) regarded asafunc-
tion of 4 and o, where ty,...,tn constitute an i.i.d.
random sample, is the log-likelihood function
used to obtain MLEs of A and «. Thisfunctionis
usually denoted as L(A,afts,. ..,tn) and the respec-
tive estimators as 1 and @. These estimators are
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equal to the optimal values of A and « for which
L(4,afty,....tn) attains its maximum, and are
found by equating the partial derivatives of
L(A,afty,...,tn) to zero (necessary but not suffi-
cient condition for a maximum to exist).

From (2) we obtain:

LA alty, ..., ty)
= N-In(Aa) + X [(e — D In(at;) — (2£,)"]
= N - [In(a) + a - In()] +

+ 204 [(a = 1) In(t;) — (At)"]. 3)

Differentiating the log-likelihood function w.r.t. 4
and «a yields:

oL(Aalty,..ty) _ « N

= =T (N =2 ) (4)
BL(l,aIt ,...,tN) _ N i N

— = =~ 4+ N-In(D) + Yo, In(t;) +

—A*In() N, ¢ — 222, ¢ In(t). (5)

Let 1 and @ bethe values of A and « for which the
right-hand sides of (4) and (5) are equal to zero.
From (4) we have:

A= (z”Nt@)W' (©)

J=17]

Substituting A in (5) with A given by (6) we ob-
tain:

S, ¢ In(e) _

N _,a

1 1 N
a—+ﬁ2j=11n(tj) - Ejzl ¢ 0. (7)

The above equation is used to determine &. It can
only be solved numerically, e.g. by the Newton-
Raphson method. However, once & is found, 1 is
easily computed from (6).

The estimators A and & satisfying (6) and (7) are
biased and there exists no simple method of com-
puting the respective biases (Chen et al., 2017).
On the contrary, the new estimators presented in
Sections 4 and 5, as well astheir biases, are given
by relatively simple explicit formulas.

4. New ML Es based on sequences of minimal
repairs

Lemma 1

Let f (t) bethe PDF of thetest item’s TTEF. Let the
item undergo m-1 minima repars, where
S,S,...,Sn are the moments of successive fail-
ures, i.e. the new item is put to operationat $ =0,
the i-th minimal repar is performed a S,
1<i<m-1, and Snisthetime of the last failure
after which no more repairs are performed.
Clearly, S =Ty +...+Ti, 1 <i < m. Under these as-
sumptions, the PDF of the vector r.v. [Ty,...,Tn],
denoted by f M(ty,...,tm), isgiven by the following
formula:

FO(ty, o t)

=M (b + o+ ) e+ o+ )
= [IZ3" r(s0) f (sm) (8)

Proof:
For m> 2 it holds that

T, € (t1, & + Aty],
Pr :
T € (tm, tm + At,]

= PI‘(T1 € (tl, tl + Atl]) X

T; € (t;, t; + At;] |
x [T™, Pr Ti_y € (ti—q, :ti—l + At;_4],

T; € (t1,t; + Aty]
=~ [F(t; + Aty) — F(t;)] X

T, € (t; t; + At;] | )

m i irbi 12
X l_[izz Pr (Tl + 4 Ti—l =t +--+ ti—1
= [F(ty + Aty) — F(t,)] X

v l_[m F(tq++ti_q+t;+At)—F(t1+-+t;_1 +t;)
=2 1-F(tq+-+tj_1)

_ l_[m_l F(t1+-+t;+At))—F(t1+---+t;) %

=1 1—F(ty++t)

X [F(ty + ..+ t,, + At,) —F(t; + ... + t)].
©)
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The penultimate equality in (2) holds due to the
fact that if Ta isthe residual TTF of an operable
item after it has reached the age a, then

F(a+t+At)—-F(a+t)
1-F(a)

Pr(T, € (t + At]) =

We have;

mp(m)
F et ) = L Cntm)

Aty..0tm
Ty E(tq, t1+AL, ]
Pr :
. Tm€(tm, tm+At
— lim m (m m m] (10)
At1—>0,...,Atm—>0 AtlAtm

where F™M(ty,....tm) is the CDF of [Ty,...,Tm] .
From (9) and (10) it follows that

f(m)(tl' LR tm)

— l—[m—l fty+-+t;)

i=1 1—F(t1+...+ti)f(t1 + -+ tm)

=121 r(s0) f (sm).- (11)

This ends the proof.

In the case of a two-parameter Weibull distribu-
tion, i.e.

f(®) = ad(At)*texp[—(A0)*],
r(t) = ad(At)* 1 (12)

where « and 1 are the shape and scal e parameters,
we have:

(e, ...

= a"A" L0t + - + ti)a_l X

)

xexp [ —(D)%(ty + -+ t,)%]. (13)

The above formulais obtained from (8) combined
with (12). The density f ™(ty,...,tn), interpreted as
the function of 4 and ¢, isthe likelihood function
for the samplety,...,tm, denoted by L(a,Alts,. .. tm).
From (13) it follows that

In[L(a, Alty, ..., t)]

=m-In(a) + a-m-In(1) +
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+(a@—-1) X% In(ty + - +t) +

—A%(t; + -+ )% (14)
We have thus derived the expression for the log-
likelihood function (the logarithm of the likeli-
hood function), which will play fundamental role
in finding MLE of the parameters A and c.

The standard way to find the maximum likelihood
estimates of unknown parameters— the arguments
of alikelihood function — is to compute the first
partial derivatives of the log-likelihood function
w.r.t. these parameters, and equate them to zero,
while the variables (in this case ti,...,tn), which
constitute a random sample, are considered to be
fixed. It should also be checked if the likelihood
function actually reaches a maximum where the
derivatives are equal to zero, but this check is of-
ten omitted. Applying this standard procedure to
our case we obtain:

aln[L(a, A|ty, ...
da

»tm)]

==+m-In(A) + T2 In(ty + -+ 6;) +

=A%ty + -+ ) In[A(ty + -+ t,)] (15)

and
6ln[L(O!,/1|t1; ey tm)]
A
:%—a'la_l(tl‘F“""tm)a- (16)

In order to find A and @ for which the above de-
rivatives are equal to zero, we first equate the
right-hand side of (16) to zero, which yields:

1
m/&

A=

(17)

ti++tm
We then substitute A in (15) with the quotient on
the right-hand side of (17) and equate the right-
hand side of (15) to zero, obtaining:
%+%-ln(m)—m-ln(t1 + ot ty) +

+ 32, In(t; + -+ ) == In(m) =0 (18)

which yields:
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@ = = (19)

men(ty+-+tm) -0, In(tg+--+8;)

Notethat if & in (17) is substituted by the quotient
on the right-hand side of (19), then A becomes a
function of mand ty,...,tm done.

The formulas (17) and (19) define the m-sample
estimators based on one sequence of TTFsfollow-
ing the successive minimal repairs. Here, ti,...,tm
denote the values of arandom sample obtained by
recording the respective TTFs. Clearly, @ and 1
are dependent on m, but for simplicity they are
written without m. A natural question arises as to
the accuracy of these estimators. It can be judged
by two criteria — the estimators’ biases and vari-
ances. The biases are given by the differences
A—EA) anda — E(&), where 1 and & are
treated as random variables, i.e. in (17) and (19)
the values ty,...,tn have to be replaced by the ran-
dom variables Ty,...,Th. TO be more precise, we
will find the biases of ln(i) and 1/& rather than
of Aand &, i.e. formulasfor In(2) — E[In(4)] and
1/a — E(1/a) will bederived. Thiswill be done
in the next section along with the respective justi-
fication for this workaround. In turn, due to the
encountered computational difficulties, the esti-
mators’ variances are not considered in this chap-
ter, but will be atopic of future research.

In the case of estimation based on a sample com-
posed of i.i.d. realizations of some random varia-
ble, itsaccuracy is usually determined by the con-
fidence level aong with the length of the confi-
dence interval, and the sample size has to be suf-
ficiently large in order to obtain the required ac-
curacy. Obvioudly, this size is related to the vari-
ance of the considered random variable. However,
inour casethe Ty,...,Tmare not independent, have
different CDF’s, and in practice it iS not possible
to perform alarge number of minimal repairs on
one object. Frequently, the object becomes unus-
able after several such repairs. For the above rea-
sons our parameters will be estimated by taking n
identical and independent objects, performing
m— 1 minimal repairs on each of them (m not be-
ing large) to obtain n sample values of both In(4)
and 1/&, and calculating the respective sample
means to approximate E[In(1)] and E(1/&).
Thus, A and A defined as follows

In(A)+-+In(Ay) A= 1/, ++1/n
A =BT/
n n

A= , (20)

where 4, ..., 1,, and @, ..., @, arei.i.d. instances
of 1 and & respectively, will be used as estimators
of In(1) and 1/a. They will be called n-m-sample
estimators, because the number of TTFs needed
for their computation equals n‘-m. Thelaw of large
numbers yields that

A~ E[In(1)], A~ E(1/&), (21)
thus our estimation task consistsin approximating
expected values with means of i.i.d. samples.
Clearly, the number n for which the required ac-
curacy is achieved is proportional to Var(In(1))

or Var(1/&). Let us note that in view of (20) we
have:

Var(R) = 200 yor () = WD (3

It should also be remembered that A and A are bi-
ased estimators of In(4) and 1/«. Let us note that
E(A) = E[In(1)], E(A) = E(1/&), (23)
thus the biases of A and A are equal to those of
In(4) and 1/&. In view of (22) and (23) we can
say that the n-msample estimators are n times
more accurate than the m-sample ones. The for-
mulas for the respective biases will be derived in
the next section, while finding the variances and

confidence intervals will be the subject of further
research.

5. Expressing In(4) and Ve in terms of
E[In(A)] and E(V/&), and finding biases
of In(2) and 1/@&
For further considerations we will need two aux-
iliary lemmas.

Lemma 2
For m> 1it holds that

Pr(Ty + -+ Ty > t)

_1 (A)ke
= exp[—(A0)7] T E—,

Kl 24)

Proof:
Clearly, (24) holdsfor m= 1. For m> 2, in view
of (1), we have:
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Pr(T,+ -+ T, <t)

= t1+~-~+tmstr(t1) w7ty + o 1) X
X f(ty + -+ tp)dt, ...dt;

= [ir(ty) .. f, T

2r(ty + -+ ty_q)

fot—tl_.n—tm—lf (ty + -+ t)dt,, ...dt;

= fir(t) .. [, T
X [F(t)

r (tl + b + tm—l) X
- F(tl + b + tm—l)]dtm—l dtl
= F(t) x [[r(ty) ...

.. F fot_tl_"'_t"“z r(ty+ 4ty )dty,_1..dt;

t t-t tm—
+ fo T(tl) ™ fO ! 2 T(tl + cee + tm—l) X

X [1 - F(tl + + tm—l) - 1]dtm_1 dtl

= [ r(ty) ..

fot_tl_m_tm_z f(tl + -+ tm—l) dtm—l dtl

—[1-F®O % [, r(ty) ...

".fot—tl—-..—tm—z T(tl + .+ tm_l) dtm_l_"dtl

= Pr(Ty + -+ Tpy < t) —

[1—-F(t)] x
x [1r(ty) ..

t—ty——tm—
T 2r(ty + o+ tyyoy) dtpy_q ...dt;.
(25)

In the last two steps of the above derivation
the equality r(ti+.. . +tm-1)[1 - F(ti+...+ tm-1)] =
=f (ti+...+tm-1) and formula (1) were used. The
last integral in (25) satisfies the following equal-

ity:
f r(ty) .. ft h tm_zr(tl + ot tmo1)

dtp,_q ...dt; = (At)(m-De,

(26)

(m 1)!
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In order to prove (26) let us put
SO == O,Sl = tl' ...,Sm_1 = tl + -+ tm—l-

Wethus have
t
Jy ) o

T bt ) dtyy g ey =

r(Sm—1) ASpm_q - dS;.

fsto r(sy) fstl r(sy) .. fstm_z

By the reverse induction it can be shown that

fsl;{_l Zr(sm—1) dSm_1 ...dSk

r(sK) ... fstm_

(Asg-1) " "

[(AD) — (27)

(m k)!
for k=m-1,...,1. Clearly, (27) holds for

k=m- 1. The induction step is based on the fol-
lowing derivation:

t 1
Jo 700 oy

X [(A)* = (s )™ ds,

= o Je [GDT = Qs x

(m—k—1)!YSkg-1

d()lsk)“

dsy dsi
_ ﬁ fﬂ(f,f_g[@t)“ —u]™* gy
_ —[(At)“ - u(t)
(m—-k-1){(m—k) u(Sg—-1)
(m 5 [ADF = (s "

Above, we used the following substitution:

u(s) = (1s)“.

Now (26) isadirect consequence of (27). Thefor-
mulas (25) and (26) yield the following recursive
equation that holds for m> 2:

Pr(Ty+ -+ Tp <t)
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= PT(Tl + "'+Tm_1 S t) +

—exp[— (At)“] 1)' (Ar)(m—De, (28)

Since (24) follows directly from (28), the proof is
completed.

Lemma 3
If X isacontinuous random variable then

E(X|") =7 [ x" 1 Pr(|X| > x) dx. (29)
The proof can be found in (Feller, 1971).

Lemmas 2 and 3 are needed to provethefollowing
theorem.

Theorem 1

E[In(Ty + -+ T))]

==|r@ + 2| - m@, i 2 1 (30)

where 7"is the Euler’s gamma function, and /7 is
itsfirst derivative. Thesumin bracketsisassumed
to be equal to zero for i = 1.

Proof:

We will first derive an expression for the MGF of
IN(S) = In(T¢+...+T;). Let X be a continuous non-
negative random variable. Let Gin) (t) denote the
MGF of In(X). We have

Ginepy () = E[e!"®)] = E[(eln(x))u]
=E[X%]=u fooo x¥1Pr(X > x)dx (31)

where the last equality follows from (29). Com-
bining (31) and (24) yields

Gln(Si) (u)
o<} . ka
=u [ x*lexp[- (0% B P—dx. (32)
If we put y = (1x)%, then
= lyi D = gA(Ax)* L = a/lyl_i (33)
A7 dx

Applying integration by substitution, we obtain
ufomx lexp[—(Ax)* ]( O

oo E( D 1_1
= u [ T exp(—y) - —dy

= ,d;;u Iy ya* " exp(=y) dy

r (— + k). (34)

k'a)l“

Formulas (32) and (34) yield:

rG+e)

Gll’l(sl‘) (u) al¢ Zk 0 k!

=R (1) + 2 (T")

= G.(u) + G,(u). (35)
The penultimate equality in (35) is aconsequence
of thefact that vI'(v) = I'(v + 1). The sum from
k= 1toi- 1lisassumed to be zerofor i = 1. Dif-
ferentiating G, (u) and G, (u) with respect to u we
obtain:

’ _d(iu) u 1 ~,(u 1
G == s+ 1)+ 5 (G+1);
1 ., A%1n(A)
=T (§+1)— = r(§+1) (36)
and
a2 . r(3+k ri(%+k
Gé(u)z ( )Z;{—:ll (t;d ) m ;{—11 (; )

_ attouar ) - T(5+4)
k=1

u
g1 ri(Z+k)
az)2u k! aiu “k=1

(37)

From the properties of the MGF combined with
(36) and (37) we have

dGp(s,) @)

E[In(Ty + -~ +T)] = —1

u=0
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1., 1 P F(k)
==I'() =) @) += Y=

=2[r'@ + 22| - m@). (39)
The proof of Theorem 1 is thus completed.
Applying Theorem 1 we will express « in terms
of @, and Aintermsof A, thus solving the problem
of finding the unknown parameters of the Weibull
distribution. More precisely, for technical reasons
explained further on, 1/« will be expressed as a
function of E(1/&), and In(4) — as a function of
E[In(4)]. In tun, E(1/&) and E[In(1)] can be
easily approximated using an n-sized random
sample of the vector random variable [Ty,...,Tn],
where n is sufficiently large. First, we derive the
relation between 1/« and E(1/&). From (19) we
obtain:

m- E[ln(t; + -+ tp,)] +

E(1/&) ==
— X ElIn(t; + -+ t)]
E[ln(t; + -+ t,)] +
_ 1 ym-1
= =1
" —E[In(t; + -+ t,)]
— [Zm 11. Zl 1 1]

=yt (39)

The penultimate equality in (39) follows directly
from Theorem 1. It holds that

gty =m -1 (40

which is easily proved by induction. As a conse-
quence of (39) and (40) we have:

1 m 1

ratd O] (41)
Hence, the bias of 1/a& is given by
1/a—E(1/@) = —E(1/8) (42)

which yields that 1/@& is an asymptotically unbi-
ased estimator of 1/« with respect to m. With re-
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gardto (20), the approximate valueof E(1/&) can
be found from the following formula:
E(1/a) = A

= (5t 5/ (43)

where, according to (19),

aijz =n(ty + o+ tg) +

——Z ln(t1]+ +tU) 1<j<n. (49
In the above formula ty;,...,tnj are the TTFs con-
gtituting the j-th vector of the random sample
composed of n readlizations of the vector random
variable [Ty,...,Tn].

Note that in formula (42) we have 1/a and
E(1/&) rather than oo and E(&). Thisis caused by
the fact that finding the relation between o and
E (@) would involve the anal ytical computation of
E(m/[m-In(s,,) — X%, In(s;)]), which is an
impossible task if only the formulas for EIn(s;)]
areknown. Thereasonisthat having aformulafor
E(X) is not sufficient to compute E(1/X).

Let us now express In(1) as a function of
E[In(4)]. From (17) it fol lows that

In(1) = %ln(m) —In(ty + - + ). (45)
Considering In(4) asarandom variable and using
(30), from (45) we obtain:

E[n(2)]

( )ln(m) _1 [r (1) + ] +In(A)

(46)

In view of (41) the above formulais converted to:
In(1) = E[ln(ﬁ)] —In(m) E (%)

+E (2) [ + 2 11.]
= En(D)] +=E(3)-

|- E2 W -2+ @)
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Hence, the bias of In(1) is given by
In(1) — E[In(1)]

25 ()

. [ln(m)

m

1 I} 1
— oA~ In(m) + 7L, 5] (49)
From the special functions theory it is known that
I’'(1) =-y, where y is the so-cdled Euler-
Mascheroni constant defined as

y = lim [z £ ln(m)] = 0.577. (49)

We dso have:

ln(m)

1imllz1, lim =0, nm—_o (50)

m—oo M— m-oo
Thus, In(4) isan asymptotically unbiased estima-
tor of In(A) with respect to m. In view of (20), the

approximate value of E[In(4)] can be found from
the following formula:

[In(21)+-+In(2y)]

E[In(1)] A= - (51)
where, according to (17) and (44),
ln(ij) = aijln(m) — ln(tlj + -+ tmj)
-1
= [mTln(m) - 1] ln(tlj + -4+ tmj) +
- 1“7(;")2{?‘11 In(ty; + -+ t;;). (52)

Note that In(4) and E[In(4)] rather than 4 and
E(A) areused in (48), because it is easier to oper-
ate on logarithms than directly on A4 and its esti-
mator .

The fact that the estimatorsIn(1) and 1/@ are as-
ymptotically unbiased with respect to mhas rather
theoretical significance, as in practice m is not
large enough for these estimators to be close
enough to In(1) and 1/ c..

6. Conclusion

A new approach to estimating the parameters of
the Weibull distribution has been presented. It
uses the mrsample estimators based on non-inde-
pendent TTFs of a repairable item subjected to
m—1 minimal repairs following the first m—1
failures. These estimators are defined by (17) and
(29). It occurs that they are biased, the respective
biases being explicitly given by (42) and (48). As
explained in Section 5, the biases are calculated
for the estimatorsIn(4) and 1/@ rather than A and

&. The more accurate n-m-sample estimators A
and A, defined by (20), are obtained from n i.i.d.
redizations of A and @. The variance of A or A is
n times smaller than that of 1 or &, while the bias
of A or A isequal to that of 1 or &.

Estimating In(4) and 1/« instead of A and a does
not pose a problem, because the parameters 4 and
a can be approximated with the use of biases of
In(4) and 1/a , asfollows:

m-—1

a~—— 1~ exp(A)-exp[A- p(m)] (53)

where
p(m)

= [E Ly (1) — In(m) + 2}’;1%].
(54)

The above formulas follow from (20), (41) and
(48).

The newly developed method has one important
advantage over the standard MLE of the Weibull
distribution parameters. Namely, (17), (19), (42)
and (48) are explicit and relatively simple formu-
las expressing the estimators and their biases as
functions of m and ts,...,tm. As shown in Section
3, the standard M LE of the shape parameter, based
on a series of i.i.d. TTFs of non-repairable test
items, is obtained from an equation that cannot be
solved analytically.

As mentioned at the end of Section 4, calculating
the variances of In(4) and 1/& remains an open
problem. It seems that explicit formulas for these
variances can be found using moment generating
functions, which will be attempted in the near fu-
ture.
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