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Abstract  
 

A new method of estimating the scale and shape parameters of the Weibull distribution is presented. 
According to this method, a Weibull distributed time-to-failure (TTF) of a test item is measured m times. 
It undergoes a minimal repair after each of the first m 1 failures, and is put out of use after the m-th 
failure. This procedure is repeated n times. Based on m TTFs of one test item, which are neither inde-
pendent nor identically distributed (IID), the maximum likelihood estimators (MLE) of the scale and 
shape parameters, called m-sample estimators, are obtained. The accuracy of the m-sample estimators 
is low, however, it can be improved by using the mean values of their n IID realizations as more precise 
estimators. The latter are called n m-sample estimators, have the same biases as the respective m-sample 
ones, but their variances are n times smaller. Interestingly enough, the n m-sample estimators of the 
scale and shape parameters, as well as their biases, are given by relatively simple explicit formulas. 
This is somewhat unexpected in view of the fact that the standard MLE of the shape parameter, based 
on IID TTFs of non-repairable test items, is obtained from an equation that cannot be solved analyti-
cally. 
 
1. Introduction  
 

The current chapter deals with the problem of es-
timating the scale and shape parameters of the 
Weibull distribution. This topic has been thor-
oughly investigated by multiple statisticians 
(Almazah & Ismail, 2021; Chikr el-Mezouar, 
2010; Dodson, 2006). Weibull estimation has 
many practical applications demonstrated, inter 
alia, in (Evans et al., 2019; Lei, 2008; Wu et al., 
2021). Nevertheless, a new method, stemming 
from the reliability theory, has been developed 
and is presented here. It is a well-known fact that 
the time-to-failure (TTF) of many technical de-
vices (or their components) is a Weibull distrib-
uted random variable. Therefore, in order to esti-
mate its parameters, the usual procedure is to 

calculate the required estimates from the values of 

the random sample. Such an approach is pursued 
in (Almazah & Ismail, 2021; Alizadeh et al., 
2015; Wu et al., 2021), to name a few. Sometimes, 
due to restrictions imposed on the sampling time, 
only censored data are available. Weibull estima-
tion with such data is discussed in (Alkutubi & 
Ali, 2011). No matter whether the sample is com-
plete or censored, the standard procedure has one 
essential disadvantage  if failed objects are no 
longer usable then a large number of test items are 
needed in order to achieve high estimation accu-
racy, which may lead to unacceptable cost. How-
ever, if the test items are repairable, then a differ-
ent approach can be used to reduce this cost. Ac-
cording to the proposed method each item under-
goes m  1 minimal repairs, where the i-th repair 
follows the i-th failure, 1  i  m  1, and is put 
out of use after the m-th failure. It is natural for m 
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to be the minimum number of failures that one 
tested object can survive; usually m is not large. 
The above procedure is repeated n times, which 
amounts to destructive testing of n items. Let tij be 
the i-th operation period of the j-th item, i.e. the 
time elapsed between the (i  1)-th repair and the 
i-th failure of this item, 1  i  m, 1  j  n (the 0-
th repair takes place when a new item is put into 
operation). The time periods tij, 1  i  m, 
1  j  n, constitute a random sample composed 
of n vectors of length m, where the j-th vector con-
tains successive operation periods for the j-th 
item. Based upon the collected data, and the ap-
propriately constructed estimators, the sought pa-
rameters can be evaluated. Following this scheme, 
the required estimation accuracy can be reached 
for the number n significantly smaller than in the 
case of a non-repairable test item that becomes un-
usable after the first failure. 
The chapter is organized as follows. In Section 2 
the notation used in the chapter is defined. Sec-
tion 3 is a reminder on the standard MLEs of the 
Weibull distribution parameters, based on multi-
ple i.i.d. realizations of a Weibull distributed r.v. 
In Section 4 the MLEs of the scale and shape pa-
rameters of the Weibull distribution, based on a 
sequence of m  1 minimal repairs, are con-
structed. It is then explained how the expected 
values of those estimators can be approximated 
using n independent test items. In Section 5 the 
sought parameters are expressed in terms of the 
expected values of the respective estimators. The 
derived formulas allow to calculate, in a simple 
way, the biases of the estimators constructed in 
Section 3. Finally, Section 6, summarizes the ob-
tained results and indicates topics for further re-
search. 
The proposed method allows to express the MLE 
of the scale and shape parameters in analytical 
form. These estimators occur to be biased, but 
their biases can also be computed analytically. 
Thus, the newly developed method of estimating 
the Weibull distribution parameters is based 
solely on analytical formulas. For comparison, the 
standard MLE estimator of the shape parameter, 
using an IID sample obtained from a large number 
of test items, is derived from an equation that can-
not be solved analytically.  
 
 
 

2. Notation 
 

 CDF  cumulative distribution function, 
 MGF  moment generating function, 
 MLE  maximum likelihood estimator/estima-

tion, 
 PDF  probability density function, 
 TTF  time-to-failure (a continuous, nonnega-

tive random variable), 
 r(t)  failure (hazard) rate; 

i.e. r(t) = f (t)/[1 F(t)], where f (t) and F(t) are 
the PDF and CDF of the TTF under considera-
tion, 

 i.i.d.  an abbreviation meaning independent 
and identically distributed, 

 r.v.  an abbreviation meaning random varia-
ble, 

 T1 Tm  the sequence of successive TTFs of 
a repairable item subjected to m  1 minimal 
repairs following the first m  1 failures of this 
item, 

 S1 Sm  moments of successive failures of  
a repairable item, i.e. Si = T1 Ti, 1  i  m, 

 m-sample estimator  the MLE based on the se-
quence of m  1 minimal repairs performed on 
one item (m TTFs), 

 n m-sample estimator  the MLE based on n 
sequences of m  1 minimal repairs performed 
on n independent items (n m TTFs). 

 
3. Standard MLEs based on multiple i.i.d.  

realizations of Weibull r.v. 
 

The PDF of a Weibull r.v. with the scale and shape 
parameters  and  is given by 
 

 (1) 
 
Thus, the following formula defines the PDF of a 
vector of N i.i.d. Weibull r.v.: 
 

  
 

 (2) 
 
The logarithm of  regarded as a func-
tion of  and , where t1 tN constitute an i.i.d. 
random sample, is the log-likelihood function 
used to obtain MLEs of  and . This function is 
usually denoted as L( , |t1 tN) and the respec-
tive estimators as  and . These estimators are 
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equal to the optimal values of  and  for which 
L( , |t1 tN) attains its maximum, and are  
found by equating the partial derivatives of 
L( , |t1 tN) to zero (necessary but not suffi-
cient condition for a maximum to exist). 
From (2) we obtain: 
 

  
 

  
 

  
 

. (3) 
 
Differentiating the log-likelihood function w.r.t.  
and  yields: 
 

 (4) 
 

  
 

. (5) 
 
Let  and  be the values of  and  for which the 
right-hand sides of (4) and (5) are equal to zero. 
From (4) we have: 
 

. (6) 

 
Substituting  in (5) with  given by (6) we ob-
tain: 
 

. (7) 

 
The above equation is used to determine . It can 
only be solved numerically, e.g. by the Newton-
Raphson method. However, once  is found,  is 
easily computed from (6). 
The estimators  and  satisfying (6) and (7) are 
biased and there exists no simple method of com-
puting the respective biases (Chen et al., 2017). 
On the contrary, the new estimators presented in 
Sections 4 and 5, as well as their biases, are given 
by relatively simple explicit formulas.  
 
 

4. New MLEs based on sequences of minimal 
repairs  

 

Lemma 1 
Let f (t) be the PDF of the test item Let the 
item undergo m  1 minimal repairs, where 
S1,S2 Sm are the moments of successive fail-
ures, i.e. the new item is put to operation at S0 = 0, 
the i-th minimal repair is performed at Si, 
1  i  m  1, and Sm is the time of the last failure 
after which no more repairs are performed. 
Clearly, Si = T1 Ti, 1  i  m. Under these as-
sumptions, the PDF of the vector r.v. [T1 Tm]T, 
denoted by f (m)(t1 tm), is given by the following 
formula: 
 

  
 

  
 

 (8) 
 
Proof: 
For m  2 it holds that 
 

  

 
  

 

  

 
  

 

  

 
  

 
  

 
  

 
 

 (9) 
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The penultimate equality in (2) holds due to the 
fact that if Ta is the residual TTF of an operable 
item after it has reached the age a, then 
 

.  
 
We have: 
 

  
 

  (10) 
 
where F(m)(t1 tm) is the CDF of [T1 Tm]T. 
From (9) and (10) it follows that 
 

  
 

  
 

. (11) 
 
This ends the proof. 
In the case of a two-parameter Weibull distribu-
tion, i.e. 
 

, 
 

 (12) 
 
where  and  are the shape and scale parameters, 
we have: 
 

  
 

  
 

. (13) 
 
The above formula is obtained from (8) combined 
with (12). The density f (m)(t1 tn), interpreted as 
the function of  and , is the likelihood function 
for the sample t1 tm, denoted by L( , |t1 tm). 
From (13) it follows that 
 

  
 

  

  
 

. (14)  
 
We have thus derived the expression for the log-
likelihood function (the logarithm of the likeli-
hood function), which will play fundamental role 
in finding MLE of the parameters  and . 
The standard way to find the maximum likelihood 
estimates of unknown parameters  the arguments 
of a likelihood function  is to compute the first 
partial derivatives of the log-likelihood function 
w.r.t. these parameters, and equate them to zero, 
while the variables (in this case t1 tn), which 
constitute a random sample, are considered to be 
fixed. It should also be checked if the likelihood 
function actually reaches a maximum where the 
derivatives are equal to zero, but this check is of-
ten omitted. Applying this standard procedure to 
our case we obtain: 
 

  
 

  
 

  (15) 
 
and 
 

  
 

. (16)  
 
In order to find  and  for which the above de-
rivatives are equal to zero, we first equate the 
right-hand side of (16) to zero, which yields: 
 

 (17) 
 
We then substitute  in (15) with the quotient on 
the right-hand side of (17) and equate the right-
hand side of (15) to zero, obtaining: 
 

  
 

 (18) 
 
which yields: 
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. (19) 
 
Note that if  in (17) is substituted by the quotient 
on the right-hand side of (19), then  becomes a 
function of m and t1 tm alone. 
The formulas (17) and (19) define the m-sample 
estimators based on one sequence of TTFs follow-
ing the successive minimal repairs. Here, t1 tm 
denote the values of a random sample obtained by 
recording the respective TTFs. Clearly,  and  
are dependent on m, but for simplicity they are 
written without m. A natural question arises as to 
the accuracy of these estimators. It can be judged 
by two criteria  the  biases and vari-
ances. The biases are given by the differences  

 and , where  and  are 
treated as random variables, i.e. in (17) and (19) 
the values t1 tn have to be replaced by the ran-
dom variables T1 Tn. To be more precise, we 
will find the biases of  and  rather than 
of  and , i.e. formulas for  and 

 will be derived. This will be done 
in the next section along with the respective justi-
fication for this workaround. In turn, due to the 
encountered computational difficulties, the esti-

chap-
ter, but will be a topic of future research. 
In the case of estimation based on a sample com-
posed of i.i.d. realizations of some random varia-
ble, its accuracy is usually determined by the con-
fidence level along with the length of the confi-
dence interval, and the sample size has to be suf-
ficiently large in order to obtain the required ac-
curacy. Obviously, this size is related to the vari-
ance of the considered random variable. However, 
in our case the T1 Tm are not independent, have 

s not possible 
to perform a large number of minimal repairs on 
one object. Frequently, the object becomes unus-
able after several such repairs. For the above rea-
sons our parameters will be estimated by taking n 
identical and independent objects, performing  
m  1 minimal repairs on each of them (m not be-
ing large) to obtain n sample values of both  
and , and calculating the respective sample 
means to approximate  and . 
Thus,  and  defined as follows 
 

, , (20) 
 

where  and  are i.i.d. instances 
of  and  respectively, will be used as estimators 
of  and . They will be called n m-sample 
estimators, because the number of TTFs needed 
for their computation equals n m. The law of large 
numbers yields that  
 

, , (21) 
 
thus our estimation task consists in approximating 
expected values with means of i.i.d. samples. 
Clearly, the number n for which the required ac-
curacy is achieved is proportional to  
or . Let us note that in view of (20) we 
have: 
 

, . (22) 
 
It should also be remembered that  and  are bi-
ased estimators of  and . Let us note that 
 

, ,  (23) 
 
thus the biases of  and  are equal to those of 

 and . In view of (22) and (23) we can 
say that the n m-sample estimators are n times 
more accurate than the m-sample ones. The for-
mulas for the respective biases will be derived in 
the next section, while finding the variances and 
confidence intervals will be the subject of further 
research. 
 
5. Expressing ln( ) and 1/  in terms of 

E[ln( )] and E(1/ ), and finding biases 
of  and   

 

For further considerations we will need two aux-
iliary lemmas. 
 
Lemma 2 
For m  1 it holds that 
 

  
 

. (24) 
 
Proof: 
Clearly, (24) holds for m = 1. For m  2, in view 
of (1), we have: 
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.  
 (25) 
 
In the last two steps of the above derivation  
the equality r(t1 tm  1)[1  F(t1  tm  1)] = 
= f (t1 tm  1) and formula (1) were used. The 
last integral in (25) satisfies the following equal-
ity: 
 

  
 

. (26) 

In order to prove (26) let us put 
 

.  
 
We thus have 
 

  
 

  
 

. 
 
By the reverse induction it can be shown that 
 

  
 

 (27) 
 
for k = m  ) holds for 
k = m  1. The induction step is based on the fol-
lowing derivation: 
 

  
 

  
 

  
 

  
 

  
 

  

 
.  

 
Above, we used the following substitution: 
 

.  
 
Now (26) is a direct consequence of (27). The for-
mulas (25) and (26) yield the following recursive 
equation that holds for m  2: 
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. (28) 
 
Since (24) follows directly from (28), the proof is 
completed.  
 
Lemma 3 
If X is a continuous random variable then 
 

. (29) 
 
The proof can be found in (Feller, 1971). 
 
Lemmas 2 and 3 are needed to prove the following 
theorem. 
 
Theorem 1 
 

 
 

,  (30) 
 
where   is 
its first derivative. The sum in brackets is assumed 
to be equal to zero for i = 1. 
 
Proof: 
We will first derive an expression for the MGF of 
ln(Si) = ln(T1 Ti). Let X be a continuous non-
negative random variable. Let Gln(X) (t) denote the 
MGF of ln(X). We have 
 

 
 

  (31) 
 
where the last equality follows from (29). Com-
bining (31) and (24) yields 
 

 
 

.   (32) 
 
If we put y = ( x) , then 
 

   (33) 
 

Applying integration by substitution, we obtain 
 

  
 

  
 

  
 

. (34) 
 
Formulas (32) and (34) yield: 
 

  
 

  
 

  
 

. (35) 
 
The penultimate equality in (35) is a consequence 
of the fact that . The sum from 
k = 1 to i  1 is assumed to be zero for i = 1. Dif-
ferentiating  and  with respect to u we 
obtain: 
 

  
 

   (36) 
 
and 
 

  
 

  
 (37) 
 
From the properties of the MGF combined with 
(36) and (37) we have 
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. (38) 
 
The proof of Theorem 1 is thus completed. 
Applying Theorem 1 we will express  in terms 
of , and  in terms of , thus solving the problem 
of finding the unknown parameters of the Weibull 
distribution. More precisely, for technical reasons 
explained further on, 1/  will be expressed as a 
function of , and ln( )  as a function of 

. In turn,  and  can be 
easily approximated using an n-sized random 
sample of the vector random variable [T1 Tm], 
where n is sufficiently large. First, we derive the 
relation between 1/  and . From (19) we 
obtain: 
 

  

 

  

 
  

 
. (39) 

 
The penultimate equality in (39) follows directly 
from Theorem 1. It holds that 
 

 (40) 
 
which is easily proved by induction. As a conse-
quence of (39) and (40) we have: 
 

.  (41) 
 
Hence, the bias of  is given by 
 

   (42) 
 
which yields that  is an asymptotically unbi-
ased estimator of 1/  with respect to m. With re- 

gard to (20), the approximate value of  can 
be found from the following formula: 
 

   (43) 
 
where, according to (19), 
 

  

 
, .  (44) 

 
In the above formula t1j tmj are the TTFs con-
stituting the j-th vector of the random sample 
composed of n realizations of the vector random 
variable [T1 Tm].  
Note that in formula (42) we have 1/  and 

 rather than  and . This is caused by 
the fact that finding the relation between  and 

 would involve the analytical computation of 
, which is an 

impossible task if only the formulas for  
are known. The reason is that having a formula for 
E(X) is not sufficient to compute E(1/X). 
Let us now express ln( ) as a function of 

. From (17) it follows that 
 

. (45) 
 
Considering  as a random variable and using 
(30), from (45) we obtain: 
 

  
 

 
 (46) 
 
In view of (41) the above formula is converted to: 
 

  
 

  
 

  
 

.  (47) 
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Hence, the bias of  is given by 
 

  
 

  
 

. (48) 
 
From the special functions theory it is known that 

(1) = , where  is the so-called Euler-
Mascheroni constant defined as 
 

.  (49) 
 
We also have: 
 

, , . (50) 
 
Thus,  is an asymptotically unbiased estima-
tor of ln( ) with respect to m. In view of (20), the 
approximate value of  can be found from 
the following formula: 
 

 (51) 
 
where, according to (17) and (44), 
 

  

 
  

 
. (52) 

 
Note that ln( ) and  rather than  and 

 are used in (48), because it is easier to oper-
ate on logarithms than directly on  and its esti-
mator . 
The fact that the estimators  and  are as-
ymptotically unbiased with respect to m has rather 
theoretical significance, as in practice m is not 
large enough for these estimators to be close 
enough to ln( ) and 1/ . 
 
 
 

6. Conclusion 
 

A new approach to estimating the parameters of 
the Weibull distribution has been presented. It 
uses the m-sample estimators based on non-inde-
pendent TTFs of a repairable item subjected to  
m  1 minimal repairs following the first m  1 
failures. These estimators are defined by (17) and 
(19). It occurs that they are biased, the respective 
biases being explicitly given by (42) and (48). As 
explained in Section 5, the biases are calculated 
for the estimators  and  rather than  and 

. The more accurate n m-sample estimators  
and , defined by (20), are obtained from n i.i.d. 
realizations of  and . The variance of  or  is 
n times smaller than that of  or , while the bias 
of  or  is equal to that of  or .  
Estimating  and  instead of  and  does 
not pose a problem, because the parameters  and 

 can be approximated with the use of biases of 
 and  , as follows: 

 
,   (53) 

 
where 
 

  
 

.  
  (54) 
 
The above formulas follow from (20), (41) and 
(48). 
The newly developed method has one important 
advantage over the standard MLE of the Weibull 
distribution parameters. Namely, (17), (19), (42) 
and (48) are explicit and relatively simple formu-
las expressing the estimators and their biases as 
functions of m and t1 tm. As shown in Section 
3, the standard MLE of the shape parameter, based 
on a series of i.i.d. TTFs of non-repairable test 
items, is obtained from an equation that cannot be 
solved analytically. 
As mentioned at the end of Section 4, calculating 
the variances of  and  remains an open 
problem. It seems that explicit formulas for these 
variances can be found using moment generating 
functions, which will be attempted in the near fu-
ture. 
 



 
Malinowski Jacek 

172 

References  
 

Alizadeh, M., Rezaei, S. & Bagheri, S.F. 2015. On 
the estimation for the Weibull distribution. An-
nals of Data Science 2(4), 373 390. 

Alkutubi, H.S. & Ali, H.M. 2011. Maximum like-
lihood estimators with complete and censored 
data. European Journal of Scientific Research 
54(3), 407 410. 

Almazah, M. & Ismail, M. 2021. Selection of ef-
ficient parameter estimation method for two-pa-
rameter Weibull distribution. Hindawi. Mathe-
matical Problems in Engineering 2021, article 
ID 5806068. 

Chen, M., Zhang, Z. & Cui, C. 2017. On the bias 
of the maximum likelihood estimators of param-
eters of the Weibull distribution. Mathematical 
and Computational Applications 22(1), 19.  

Chikr el-Mezouar, Z. 2010. Estimation of the 
shape, location and scale parameters of the 
Weibull distribution. Reliability: Theory & Ap-
plications (Electronic Journal of International 
Group on Reliability) 5(4), 3 40. 

Dodson, B. 2006. The Weibull Analysis Hand-
book. Second Edition. American Society for 
Quality. 

Evans, J.W., Kretschmann, D.E. & Green, D.W. 
2019. Procedures for estimation of Weibull Pa-
rameters. United States Department of Agricul-
ture, Forest Service, Forest Products Labora-
tory. General Technical Report FPL GTR 264. 

Feller, W. 1971. An Introduction to Probability 
Theory and its Applications. John Wiley & 
Sons, New York. 

Lei, Y. 2008. Evaluation of three methods for es-
timating the Weibull distribution parameters of 
Chinese pine. Journal of Forest Science 54(12), 
566 571. 

Wu, Y., Xie, H., Chiang, J.-Y., Peng, G. & Qin, 
Y. 2021. Parameter estimation and applications 
of the Weibull distribution for strength data of 
glass fiber. Hindawi. Mathematical Problems in 
Engineering 2021, article ID 9175170. 


