Identyfikatory
Warianty tytułu
Research of sintered powder material turning using Production Module software
Języki publikacji
Abstrakty
This paper proposes a scheme of investigations aimed at stabilizing the value of the components of cutting force along the cutting tool path. The proposed optimization method is based on the modification of the feed rate and calculated components of cutting forces on the basis of the cross-section layer and material model. As part of the study the proposed method was verified. The turning process of the aircraft engine element was analyzed. The stabilization of the cutting force components caused a significant reduction their maximum values.
Czasopismo
Rocznik
Tom
Strony
16--21
Opis fizyczny
Bibliogr. 12 poz., il., wykr.
Twórcy
autor
- Instytut Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny, Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Polska
autor
- Instytut Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny, Politechnika Krakowska, Al. Jana Pawła II 37, 31-864 Kraków, Polska
Bibliografia
- [1] Baskar N., Asokan P., Saravanan R., Prabhaharan G., Optimization of Machining Parameters for Milling Operations Using Non-conventional Methods. “Int. J. Adv. Manuf. Technol.” 25/2005, pp. 1078-1088.
- [2] Camposeco-Negrete C., Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum. “Journal of Cleaner Production” 91/2015, pp. 109-117.
- [3] Huang P., Lee W.B., Chan C.Y., Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning. “International Journal of Machine Tools and Manufacture” 94/2015, pp. 48-56.
- [4] Laxman Abhang L., Hameedullah M., Simultaneous Optimization of Multiple Quality Characteristics In Turning EN-31 Steel. “Materials Today: Proceedings” 2/4-5/2015, pp. 2640-2647.
- [5] Li Z.Z., Zhang Z., Zheng H., Feedrate optimization for variant milling process based on cutting force prediction. “Int. J. Adv. Manuf. Technol.” 24/2004, pp. 541-552.
- [6] Merdol S.D., Yusuf Y., Virtual cutting and optimization of three-axis milling processes. “International Journal of Machine Tools & Manufacture” 48/2008, pp. 1063-1071.
- [7] Ramesha S., Karunamoorthyb L., Palanikumarc K., Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). “Measurement” 45/5/2012, pp. 1266-1276.
- [8] Sad´ılek M., Dubsk´y J., Sad´ılkov´a Z., Poruba Z., Cutting forces during turning with variable depth of cut. “Perspectives in Science” 7/2016, pp. 357-363.
- [9] Słodki B., Chipformers reliability in Inconel 625 longitudinal turning. “Management and Production Engineering Review” 4/2/2013, pp. 93-101.
- [10] User’s Manual of Production Module v7.1 machining simulation software. Minneapolis, MN, 2015.
- [11] Wanga Q., Wub Y., Guc J., Lud D., Jie Y., Nomurab M., Fundamental Machining Characteristics of the In-base-plane Ultrasonic Elliptical Vibration Assisted Turning of Inconel 718. “Procedia CIRP” 42/2016, pp. 858-862.
- [12] Zębala W., Milling optimization of difficult to machine alloys. “Management and Production Engineering Review” 1/1/2010, pp. 59-70.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd70ef38-f16a-4c52-a657-f8142b591fec