PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transport parameters of selected neonicotinoids in different aquifer materials using batch sorption tests

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contamination of surface and groundwater by neonicotinoids is a global problem and requires comprehensive action by individual countries in order to identify in detail the processes affecting the transport of these pesticides, their properties, and their harmfulness to the environment. The aim of this study was to assess the transport (expressed by sorption parameters) of selected neonicotinoids in the aquatic environment, using batch tests. Tests were carried out for acetamiprid individually and a mixture of five neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam), for three different aquifer materials and quartz sand. Based on the obtained values of the sorption parameters, the greatest sorption of neonicotinoids was observed on soil with the highest content of organic matter and clay minerals content, while no sorption of these pesticides was observed on quartz sand. In addition, it was noticed that individual neonicotinoids undergo sorption to a different degree — thiacloprid was the most sorbed (R-value in the range 3.13–26.03), while thiamethoxam was the least (R-value in the range 1.89–8.41).
Wydawca
Rocznik
Strony
367--379
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland
Bibliografia
  • Ankley G.T., Hoff D.J., Mount D.R., Lazorchak J., Beaman J., Linton T.K. & Erickson R.J., 2008. Aquatic life criteria for contaminants of emerging concern. EPA OW/ORDEmerging Contaminants Workgroup. https://www.epa.gov/sites/default/files/2015-08/documents/white_paper_aquatic_life_criteria_for_contaminants_of_emerging_concern_part_i_general_challenges_and_recommendations_1.pdf [access: 15.05.2022].
  • Banerjee K., Patil S.H., Dasgupta S., Oulkar D.P. & Adsule P.G., 2008. Sorption of thiamethoxam in three Indian soils. Journal of Environmental Science and Health – Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 43, 151–156. https://doi.org/10.1080/03601230701795130.
  • Barbosa M.O., Moreira N.F.F., Ribeiro A.R., Pereira M.F.R. & Silva A.M.T., 2016. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Research, 94, 257–279. https://doi.org/10.1016/j.watres.2016.02.047.
  • Bonmatin J.M., Noome D.A., Moreno H., Mitchell E.A.D., Glauser G., Soumana O.S., Bijleveld van Lexmond M. & Sánchez-Bayo F., 2019. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environmental Pollution, 249, 949–958. https://doi.org/10.1016/j.envpol.2019.03.099.
  • Campos-M M. & Campos-C R., 2017. Applications of quartering method in soils and foods. International Journal of Engineering Research and Applications, 7, 35–39. https://doi.org/10.9790/9622-0701023539.
  • Cooke C.M., Shaw G. & Collins C.D., 2004. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils. Environmental Pollution, 132, 541–552. https://doi.org/10.1016/j.envpol.2004.04.027.
  • Dragon K., Drozdzynski, D., Gorski J. & Kruc R., 2019. The migration of pesticide residues in groundwater at a bank filtration site (Krajkowo well field, Poland). Environmental Earth Science, 78, 593. https://doi.org/10.1007/s12665-019-8598-0.
  • Ellison S.L.R. & Williams A. (eds.), 2012. Eurachem/CITAC Guide CG 4: Quantifying Uncertainty in Analytical Measurement. 3rd ed. https://www.eurachem.org/images/stories/ Guides/pdf/QUAM2012_P1.pdf [access: 15.05.2022].
  • Gonzalez-Rey M., Tapie N., Le Menach K., Dévier M.H., Budzinski H. & Bebianno M.J., 2015. Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Marine Pollution Bulletin, 96, 384–400. https://doi.org/10.1016/j.marpolbul.2015.04.029.
  • Greulich K. & Alder L., 2008. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Analytical and Bioanalytical Chemistry, 391, 183–197. https://doi.org/10.1007/s00216-008-1935-x.
  • Hao C., Noestheden M.R., Zhao X. & Morse D., 2016. Liquid chromatography-tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection. Analytica Chimica Acta, 925, 43–50. https://doi.org/10.1016/j.aca.2016.04.024.
  • Hladik M.L., Kolpin D.W. & Kuivila K.M., 2014. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental Pollution, 193, 189–196. https://doi.org/10.1016/j.envpol.2014.06.033.
  • Kodešová R., Kočárek M., Kodeš V., Drábek O., Kozák J. & Hejtmánková K., 2011. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186, 540–550. https://doi.org/10.1016/j.jhazmat.2010.11.040.
  • Kyzioł-Komosińska J. & Pająk M., 2009. Analiza regresji izoterm sorpcji jonów miedzi i kadmu na iłach smektytowych [Regression analysis for the sorption isotherms of copper and cadmium ions on smectite clays]. Biuletyn Państwowego Instytutu Geologicznego, 436(9/2), 309–316.
  • Lamers M., Anyusheva M., La N., Nguyen V.V. & Streck T., 2011. Pesticide pollution in surface- and groundwater by paddy rice cultivation: A case study from Northern Vietnam. Clean – Soil, Air, Water, 39(4), 356–361. https://doi.org/10.1002/clen.201000268.
  • Leiva J.A., Nkedi-Kizza P., Morgan K.T. & Qureshi J.A., 2015. Imidacloprid sorption kinetics, equilibria, and degradation in sandy soils of Florida. Journal of Agricultural and Food Chemistry, 63, 4915–4921. https://doi.org/10.1021/acs.jafc.5b00532.
  • Li Y., Zhu Y., Liu X., Wu X., Dong F., Xu J., Zheng Y., 2017. Bioavailability assessment of thiacloprid in soil as affected by biochar. Chemosphere, 171, 185–191. https://doi.org/10.1016/j.chemosphere.2016.12.071.
  • Li Y., Su P., Li Y., Wen K., Bi G. & Cox M., 2018. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere, 207, 708–714. https://doi.org/10.1016/j.chemosphere.2018.05.139.
  • Liu W., Zheng W., Ma Y. & Liu K., 2006. Sorption and degradation of imidacloprid in soil and water. Journal of Environmental Science and Health – Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41, 623–634. https://doi.org/10.1080/03601230600701775.
  • Magnusson B. & Örnemark U. (eds.), 2014. Eurachem Guide: The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. 2nd ed. https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf [access: 15.05.2022].
  • Małecki J.J., Nawalny M., Witczak S. & Gruszczyński T., 2006. Wyznaczanie parametrów migracji zanieczyszczeń w ośrodku porowatym dla potrzeb badań hydrogeologicznych i ochrony środowiska: Poradnik metodyczny. Uniwersytet Warszawski, Wydział Geologii, Warszawa.
  • Morrissey C.A., Mineau P., Devries J.H., Sanchez-Bayo F., Liess M., Cavallaro M.C. & Liber K., 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024.
  • Moschet C., Wittmer I., Simovic J., Junghans M., Piazzoli A., Singer H., Stamm C. et al., 2014. How a complete pesticide screening changes the assessment of surface water quality. Environmental Science and Technology, 48, 5423–5432. https://doi.org/10.1021/es500371t.
  • Mucha J. & Nieć M., 2012. Metodyka dokumentowania złóż kopalin stałych. Cz. 3, Opróbowanie złóż kopalin. IGSMiE PAN, Kraków.
  • Murano H., Suzuki K., Kayada S., Saito M., Yuge N., Arishiro T., Watanabe A. & Isoi T., 2018. Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil. Science of the Total Environment, 615, 1478–1484. https://doi.org/10.1016/j.scitotenv.2017.09.120.
  • Nemeth-Konda L., Füleky G., Morovjan G. & Csokan P., 2002. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere, 48, 545–552. https://doi.org/10.1016/S0045-6535(02)00106-6.
  • Nham H.T.T., Greskowiak J., Nödler K., Azizur M., Spachos T., Rusteberg B., Massmann G., Sauter M. & Licha T., 2015. Modeling the transport behavior of 16 emerging organic contaminants during soil aquifer treatment. Science of the Total Environment, 514, 450–458. https://doi.org/10.1016/j.scitotenv.2015.01.096.
  • Niu Y.H., Li X., Wang H.X., Liu Y.J., Shi Z.H. & Wang L., 2020. Soil erosion-related transport of neonicotinoids in new citrus orchards. Agriculture, Ecosystems and Environment, 290, 106776. https://doi.org/10.1016/j.agee.2019.106776.
  • Oliver D.P., Kookana R.S. & Quintana B., 2005. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines. Journal of Agricultural and Food Chemistry, 53, 6420–6425. https://doi.org/10.1021/jf050293l.
  • Osmęda-Ernst E. & Witczak S., 1991. Parametry migracji wybranych zanieczyszczeń w wodach podziemnych. [in:] Ochrona wód podziemnych w Polsce – stan i kierunki badań, Centralny Program Badań Podstawowych, 04.10, Ochrona i Kształtowanie Środowiska Przyrodniczego, 56, Kraków, 201–215.
  • Papiernik S.K., Koskinen W.C., Cox L., Rice P.J., Clay S.A., Werdin-Pfisterer N.R. & Norberg K.A., 2006. Sorption-desorption of imidacloprid and its metabolites in soil and vadose zone materials. Journal of Agricultural and Food Chemistry, 54(21), 8163–8170. https://doi.org/10.1021/jf061670c.
  • Pietrzak D., 2021. Modeling migration of organic pollutants in groundwater – Review of available software. Environmental Modelling and Software, 144, 105145. https://doi.org/10.1016/j.envsoft.2021.105145.
  • Pietrzak D., Kania J., Malina G., Kmiecik E. & Wątor K., 2019a. Pesticides from the EU First and Second Watch Lists in the Water Environment. Clean: Soil, Air, Water, 47(7), 1800376. https://doi.org/10.1002/clen.201800376.
  • Pietrzak D., Wątor K., Pękała D., Wójcik J., Chochorek A., Kmiecik E. & Kania J., 2019b. LC-MS/MS method validation for determination of selected neonicotinoids in groundwater for the purpose of a column experiment. Journal of Environmental Science and Health – Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 54, 424–431. https://doi.org/https://doi.org/10.1080/03601234.2019.1574173.
  • Pietrzak D., Kania J., Kmiecik E., Malina G. & Wątor K., 2020. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere, 255, 126981. https://doi.org/10.1016/j.chemosphere.2020.126981.
  • PN-B-04481:1988. Grunty budowlane – Badania próbek gruntu. Polski Komitet Normalizacyjny, Warszawa.
  • Rodríguez-Liébana J.A., Mingorance M.D. & Peña A., 2013. Pesticide sorption on two contrasting mining soils by addition of organic wastes: Effect of organic matter composition and soil solution properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 71–77. https://doi.org/10.1016/j.colsurfa.2012.12.027.
  • Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Pereira M.F.R. & Silva A.M.T., 2018. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058.
  • Sousa J.C.G., Ribeiro A.R., Barbosa M.O., Ribeiro C., Tiritan M.E., Pereira M.F.R. & Silva A.M.T., 2019. Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Science of the Total Environment, 649, 1083–1095. https://doi.org/10.1016/j.scitotenv.2018.08.309.
  • Sultana T., Murray C., Kleywegt S. & Metcalfe C.D., 2018. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada. Chemosphere, 202, 506–513. https://doi.org/10.1016/j.chemosphere.2018.02.108.
  • Szöcs E., Brinke M., Karaoglan B. & Schäfer R.B., 2017. Large Scale Risks from Agricultural Pesticides in Small Streams. Environmental Science and Technology, 51(13), 7378–7385. https://doi.org/10.1021/acs.est.7b00933.
  • Wauchope R.D., Yeh S., Linders J.B.H.J., Kloskowski R., Tanaka K., Rubin B., Katayama A. et al., 2002. Pesticide soil sorption parameters: Theory, measurement, uses, limitations and reliability. Pest Management Science, 58(5), 419–445. https://doi.org/10.1002/ps.489.
  • Yazgan M.S., Wilkins R.M., Sykas C. & Hoque E., 2005. Comparison of two methods for estimation of soil sorption for imidacloprid and carbofuran. Chemosphere, 60, 1325–1331. https://doi.org/10.1016/j.chemosphere.2005.01.075.
  • Yu X.Y., Mu C.L., Gu C., Liu C. & Liu X.J., 2011. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere, 85, 1284–1289. https://doi.org/10.1016/j.chemosphere.2011.07.031.
  • Zhang P., Mu W., Liu F., He M. & Luo M., 2015. Adsorption and leaching of thiamethoxam in soil. Environmental Chemistry (ISSN 0254-6108), 4, 705–711.
  • Zhang P., Ren C., Sun H. & Min L., 2018. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Science of the Total Environment, 615, 59–69. https://doi.org/10.1016/j.scitotenv.2017.09.097.
  • Zhang Q., Li Z., Chang C.H., Lou J.L., Zhao M.R. & Lu C., 2018. Potential human exposures to neonicotinoid insecticides: A review. Environmental Pollution, 236, 71–81. https://doi.org/10.1016/j.envpol.2017.12.101.
  • Zheng S., ChenB., Qiu X., Chen M., Ma Z. & Yu X., 2016. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177–1192. https://doi.org/10.1016/j.chemosphere.2015.09.050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd70d14b-9011-488a-bab4-ad1ba302b43f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.