PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hypothetical accident in Polish nuclear power plant. Worst case scenario for main Polish cities

Autorzy
Identyfikatory
Warianty tytułu
PL
Hipotetyczna awaria w polskiej elektrowni jądrowej. Najgorszy scenariusz dla dużych polskich miast
Języki publikacji
EN
Abstrakty
EN
Poland is under threat of potential accidents in nuclear power plants located in its close vicinity, in almost all neighboring countries. Moreover, there are plans to establish a new nuclear power plant in Polish coast. In this paper the analysis of atmospheric transport of radioactive material released during a potential accident in the future nuclear power plant is presented. In the first part of study transport of radioactivity as seen from the long time perspective is analyzed. This involves trajectory analysis as a tool for describing the statistics of air pollution transport pattern and screening the meteorological situations for episode studies. Large sets of meteorological data for selected episodes were stored as a result of this process. Estimation of risk includes both analysis of the consequences and probability analysis of an occurrence of such situation. Episodes then were comprehensively studied in the second phase of the study, using the Eulerian dispersion model for simulation of atmospheric transport of pollutants. This study has proven that the time needed for reaction in case of (hypothetical) accident is enormously short.
Rocznik
Strony
9--28
Opis fizyczny
Bibliogr. 16 poz., rys., map., tab., wykr.
Twórcy
  • Institute of Meteorology and Water Management - National Research Institute, ul. Podleśna 61, 01-673 Warszawa, Poland, phone +48 22 569 41 34, fax +48 22 569 43 56
Bibliografia
  • [1] Bartnicki J, Saltbones J. Analysis of Atmospheric Transport and Deposition of Radioactive Material Released during a Potential Accident at Kola Nuclear Power Plant. Research Report No. 43, Oslo, Norway: Norwegian Meteorological Institute; 1997. ISSN: 03329879. https://link.springer.com/content/pdf/10.1007/978-1-4615-4153-0_57.pdf.
  • [2] Mahura AG, Baklanov AA, Sorensen JH. Estimation of potential impact on Copenhagen, Denmark due to accidental releases at Nuclear Risk Sites. Int J Environ Pollut. 2009;39(1-2):159-167. DOI: 10.1504/IJEP.2009.027149.
  • [3] Bergman R, Baklanov A, Segerstahl B. Overview of Nuclear Risks on the Kola Peninsula. IIASA Policy Report. XQ-96-806. Laxenburg, Austria: IIASA; 1996. http://pure.iiasa.ac.at/4796.
  • [4] Mahura AG, Andres R, Jaffe D. Atmospheric Transport Patterns from the Kola Nuclear Reactors. CERUM Northern Studies No. 24. Umea, Sweden: Umea University; 2001. http://www.cerum.umu.se/digitalAssets/34/34120_ns_24_01a1.pdf.
  • [5] Mazur A, Bartnicki J, Zwoździak J, Operational model for atmospheric transport and deposition of air pollution. Ecol Chem Eng S. 2014;21(3):385-400. DOI: 10.2478/eces-2014-0028.
  • [6] Nordlund G, Rossi J, Valkama I, Vuori S. Probabilistic trajectory and dose analysis for Finland due to hypothetical radioactive release at Sosnovy Bor. Research Note 847. Espoo, Finland: Technical Research Centre of Finland; 1998. ISBN: 951383106.
  • [7] Schaettler U, Blahak U. A Description of the Nonhydrostatic Regional COSMO-Model. Part V: Preprocessing: Initial and Boundary Data for the COSMO-Model. 2017. http://www.cosmo-model.org/content/model/documentation/core/int2lm_2.05.pdf.
  • [8] Schaettler U, Doms G., Schraff C. A Description of the Nonhydrostatic Regional COSMO-Model. Part VII: User Guide, 2016. http://www.cosmo-model.org/content/model/documentation/core/cosmo_userguide_5.04.pdf.
  • [9] Pongkiatkul P, Kim Oanh NT. Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data. Atmos Res. 2007;85:3-17. DOI: 10.1016/j.atmosres.2006.10.003.
  • [10] Draxler RR. Demonstration of a global modeling methodology to determine the relative importance of local and long-distance sources. Atmos Environ. 2007;41:776-789. DOI: 10.1016/j.atmosenv.2006.08.052.
  • [11] Eckhardt S, Prata AJ, Seibert P, Stebel K, Stohl A. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmos Chem Phys. 2008;8:3881-3897. DOI: 10.5194/acp-8-3881-2008.
  • [12] Carboni E, Grainger RG, Mather TA, Pyle DM, Thomas GE, Siddans R, et al. The vertical distribution of volcanic SO2 plumes measured by IASI. Atmos Chem Phys. 2016;16:4343-4367. DOI: 10.5194/acp-16-4343-2016.
  • [13] Christoudias T, Proestos Y, Lelieveld J. Atmospheric dispersion of radioactivity from nuclear power plant accidents: Global assessment and case study for the Eastern Mediterranean and Middle East. Energies. 2014; 7:8338-8354. DOI: 10.3390/en7128338.
  • [14] Gudiksen PH, Harvey TF, Lange R. Chernobyl source term, atmospheric dispersion, and dose estimation. Health Phys. 1989;57(5):697-706. DOI: 10.1097/00004032-198911000-00001.
  • [15] Mangano J. Three Mile Island: Health Study Meltdown. Bull Atomic Sci. 2004;60(5):30-35. DOI: 10.2968/060005010.
  • [16] Mazur A. Project RIOT - Ring of Threats - as an example of Decision Support System (DSS). Concept and realization. Meteorol Hydrol Water Manage. 2015;3(2): 39-47. DOI: 10.26491/mhwm/60273.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd66dfa6-9e95-49e3-aa5c-c1f762a90750
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.