PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extension of a novel higher order modeling to the vibration responses of sandwich graphene origami cylindrical panel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents dynamic formulation for a sandwich cylindrical panel based on higher order shear-deformation theory and Hamilton’s principle. The sandwich cylindrical panel is composed of a porous core sandwiched by two graphene origami reinforced copper matrix layers. The material properties of porous core and graphene origami-reinforced copper matrix layers are estimated using the Halpin–Tsai and rule of mixture for various distributions of porosity and graphene origami dispersion in terms of material and geometric characteristics of constituent materials. Through calculation of strain energy, kinetic energy and external work, the governing equations of motion are derived using Hamilton’s principle. The analytical solu tion is applied for parametric analysis of the problem. The natural frequencies are analytically obtained in terms of material and geometric parameters of graphene origami such as volume fraction and folding degree, various distributions, porosity coefcient, porosity distribution, and temperature. The numerical results indicate that the maximum natural frequency is obtained for X distribution of graphene origami.
Rocznik
Strony
art. e268, 1--27
Opis fizyczny
Bibliogr. 81 poz., il., tab., wykr.
Twórcy
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Rus D, Tolley MT. Design, fabrication and control of origami robots. Nat Rev Mater. 2018;3(6):6. https://doi.org/10.1038/ s41578-018-0009-8.
  • 2. Huang S, Huang M, Lyu Y. Seismic performance analysis of a wind turbine with a monopile foundation afected by sea ice based on a simple numerical method. Eng Appl Comput Fluid Mech. 2021;15(1):1113-33. https://doi.org/10.1080/19942060. 2021.1939790.
  • 3. Ho DT, Kim SY, Schwingenschlögl U. Graphene origami structures with superfexibility and highly tunable auxeticity. Phys Rev B. 2020;102(17): 174106. https://doi.org/10.1103/PhysR evB.102.174106.
  • 4. Boatti E, Vasios N, Bertoldi K. Metamaterials: Origami Metamaterials for Tunable Thermal Expansion (Adv. Mater. 26/2017). Adv Mater. 2017. https://doi.org/10.1002/adma.20177 0184.
  • 5. Huang H, Guo M, Zhang W, Zeng J, Yang K, Bai H. Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings. J Build Eng. 2021; 39: 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  • 6. Murari B, Zhao S, Zhang Y, Yang J. Static and dynamic instability of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fuid. Ocean Eng. 2023;280: 114859.
  • 7. Mohammad-Rezaei Bidgoli E, Aref M. Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nano-platelet-reinforced face-sheets. Archiv Civ Mech Eng. 2023;23:56. https://doi.org/10.1007/s43452-022-00589-0.
  • 8. Zhao S, Zhang Y, Wu H, Zhang Y, Yang J, Kitipornchai S. Tunable nonlinear bending behaviors of functionally graded graphene origami enabled auxetic metamaterial beams. Compos Struct. 2022;301: 116222. https://doi.org/10.1016/j.compstruct.2022. 116222.
  • 9. del Cuvillo R, Artero-Guerrero JA, Pernas-Sánchez J, López Puente J. Impact performance on industrial scalable graphene reinforcement composites. Aer Sci Tech. 2023;141: 108480. https://doi.org/10.1016/j.ast.2023.108480.
  • 10. Abolfathi M, Alavi Nia A, Akhavan Attar A, et al. Experimental and numerical investigation of the efect of the combined mecha nism of circumferential expansion and folding on energy absorption parameters. Archiv Civ Mech Eng. 2018;18:1464-77. https:// doi.org/10.1016/j.acme.2018.05.004.
  • 11. Lv C, Krishnaraju CD, Konjevod G, Yu H, Jiang H. Origami based mechanical metamaterials. Sci Rep. 2014;4:5979. https://doi.org/ 10.1038/srep05979.
  • 12. Lyu S, Qin B, Deng H, Ding X. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. Int J Mech Sci. 2021;212: 106791. https://doi.org/10. 1016/j.ijmecsci.2021.106791.
  • 13. Wang Y, Zhang Y, Gover R, Yang J, Zhang Y. Fracture resistance of graphene origami under nanoindentation. Carbon. 2023;207:67-76. https://doi.org/10.1016/j.carbon.2023.02.064.
  • 14. Akbari H, Azadi M, Fahham H. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mech Based Des Struct Mach. 2022;50(4):1268-86. https://doi.org/10. 1080/15397734.2020.1748051.
  • 15. Punera D, Kant T. An assessment of refined hierarchical kinematic models for the bending and free vibration analyses of laminated and functionally graded sandwich cylindrical panels. J Sandw Struct Mater. 2021;23(6):2506-46. https://doi.org/10.1177/10996 36220909826.
  • 16. Reddy JN, Liu CF. A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci. 1985;23(3):319-30. https:// doi.org/10.1016/0020-7225(85)90051-5.
  • 17. Lu H, Zhu Y, Yin M, Yin G, Xie L. Multimodal fusion convolutional neural network with cross-attention mechanism for internal defect detection of magnetic tile. IEEE Access. 2022;10:60876– 86. https://doi.org/10.1109/ACCESS.2022.3180725.
  • 18. Khalili SMR, Davar A, Malekzadeh Fard K. Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. Int J Mech Sci. 2012;56(1):1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002.
  • 19. Punera D, Kant T, Desai YM. Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. J Therm Stress. 2017. https://doi.org/10.1080/01495739.2017.1373379.
  • 20. Thai H-T, Kim S-E. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos Struct. 2013;96:165-73. https://doi.org/10.1016/j. compstruct.2012.08.025.
  • 21. Mohammadi M, Aref M, Dimitri R, Tornabene F. Higher-order thermo-elastic analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials. 2019;9(1):1. https://doi.org/10.3390/nano9010079.
  • 22. Kong L, Liu G. Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat Extremes. 2021;6(6):68202. https://doi.org/10.1063/5.0071856. 23. Yang K, Guan J, Shao Z, Ritchie RO. Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. J Mech Behavior Biomed Mater. 2020;110: 103942. https://doi.org/10.1016/j.jmbbm.2020.103942.
  • 24. Tian L, Li M, Li L, Li D, Bai C. Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Walled Struct. 2023;182: 110219. https://doi.org/10.1016/j. tws.2022.110219.
  • 25. Kumar P, Harsha SP. Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric efect. Mater Today Commun. 2022;32: 103929. https://doi.org/10. 1016/j.mtcomm.2022.103929.
  • 26. Zhao S, Zhang Y, Zhang Y, Yang J, Kitipornchai S. Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models. Aer Sci Tech. 2022;130: 107906. https://doi.org/10. 1016/j.ast.2022.107906.
  • 27. Xu J, Liu J, Zhang Z, Wu X. Spatial-temporal transformation for primary and secondary instabilities in weakly non-parallel shear flows. J Fluid Mech. 2023;959:A21. https://doi.org/10.1017/jfm. 2023.67.
  • 28. Dat ND, Thanh NV, MinhAnh V, Duc ND. Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. Mech Adv Mater Struct. 2022;29(10):1431-48. https:// doi.org/10.1080/15376494.2020.1822476.
  • 29. Shi H, Song Z, Bai X, Hu Y, Li T, Zhang K. A novel digital twin model for dynamical updating and real-time mapping of local defect extension in rolling bearings. Mech Syst Signal Proc. 2023;193: 110255. https://doi.org/10.1016/j.ymssp.2023.110255.
  • 30. Mirzaei M, Kiani Y. Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos Struct. 2016;142:45-56. https://doi.org/10.1016/j.compstruct.2015.12. 071.
  • 31. Keleshteri MM, Jelovica J. Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos Struct. 2020;239: 112028. https://doi.org/10.1016/j.compstruct.2020. 112028.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd634631-912a-4e48-8bf7-b9bc4f6a5ee7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.