PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extension of a novel higher order modeling to the vibration responses of sandwich graphene origami cylindrical panel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
This paper presents dynamic formulation for a sandwich cylindrical panel based on higher order shear-deformation theory and Hamilton’s principle. The sandwich cylindrical panel is composed of a porous core sandwiched by two graphene origami reinforced copper matrix layers. The material properties of porous core and graphene origami-reinforced copper matrix layers are estimated using the Halpin–Tsai and rule of mixture for various distributions of porosity and graphene origami dispersion in terms of material and geometric characteristics of constituent materials. Through calculation of strain energy, kinetic energy and external work, the governing equations of motion are derived using Hamilton’s principle. The analytical solu tion is applied for parametric analysis of the problem. The natural frequencies are analytically obtained in terms of material and geometric parameters of graphene origami such as volume fraction and folding degree, various distributions, porosity coefcient, porosity distribution, and temperature. The numerical results indicate that the maximum natural frequency is obtained for X distribution of graphene origami.
Rocznik
Strony
art. e268, 1--27
Opis fizyczny
Bibliogr. 81 poz., il., tab., wykr.
Twórcy
autor
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Rus D, Tolley MT. Design, fabrication and control of origami robots. Nat Rev Mater. 2018;3(6):6. https://doi.org/10.1038/ s41578-018-0009-8.
  • 2. Huang S, Huang M, Lyu Y. Seismic performance analysis of a wind turbine with a monopile foundation afected by sea ice based on a simple numerical method. Eng Appl Comput Fluid Mech. 2021;15(1):1113-33. https://doi.org/10.1080/19942060. 2021.1939790.
  • 3. Ho DT, Kim SY, Schwingenschlögl U. Graphene origami structures with superfexibility and highly tunable auxeticity. Phys Rev B. 2020;102(17): 174106. https://doi.org/10.1103/PhysR evB.102.174106.
  • 4. Boatti E, Vasios N, Bertoldi K. Metamaterials: Origami Metamaterials for Tunable Thermal Expansion (Adv. Mater. 26/2017). Adv Mater. 2017. https://doi.org/10.1002/adma.20177 0184.
  • 5. Huang H, Guo M, Zhang W, Zeng J, Yang K, Bai H. Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings. J Build Eng. 2021; 39: 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  • 6. Murari B, Zhao S, Zhang Y, Yang J. Static and dynamic instability of functionally graded graphene origami-enabled auxetic metamaterial beams with variable thickness in fuid. Ocean Eng. 2023;280: 114859.
  • 7. Mohammad-Rezaei Bidgoli E, Aref M. Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nano-platelet-reinforced face-sheets. Archiv Civ Mech Eng. 2023;23:56. https://doi.org/10.1007/s43452-022-00589-0.
  • 8. Zhao S, Zhang Y, Wu H, Zhang Y, Yang J, Kitipornchai S. Tunable nonlinear bending behaviors of functionally graded graphene origami enabled auxetic metamaterial beams. Compos Struct. 2022;301: 116222. https://doi.org/10.1016/j.compstruct.2022. 116222.
  • 9. del Cuvillo R, Artero-Guerrero JA, Pernas-Sánchez J, López Puente J. Impact performance on industrial scalable graphene reinforcement composites. Aer Sci Tech. 2023;141: 108480. https://doi.org/10.1016/j.ast.2023.108480.
  • 10. Abolfathi M, Alavi Nia A, Akhavan Attar A, et al. Experimental and numerical investigation of the efect of the combined mecha nism of circumferential expansion and folding on energy absorption parameters. Archiv Civ Mech Eng. 2018;18:1464-77. https://doi.org/10.1016/j.acme.2018.05.004.
  • 11. Lv C, Krishnaraju CD, Konjevod G, Yu H, Jiang H. Origami based mechanical metamaterials. Sci Rep. 2014;4:5979. https://doi.org/10.1038/srep05979.
  • 12. Lyu S, Qin B, Deng H, Ding X. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. Int J Mech Sci. 2021;212: 106791. https://doi.org/10.1016/j.ijmecsci.2021.106791.
  • 13. Wang Y, Zhang Y, Gover R, Yang J, Zhang Y. Fracture resistance of graphene origami under nanoindentation. Carbon. 2023;207:67-76. https://doi.org/10.1016/j.carbon.2023.02.064.
  • 14. Akbari H, Azadi M, Fahham H. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mech Based Des Struct Mach. 2022;50(4):1268-86. https://doi.org/10.1080/15397734.2020.1748051.
  • 15. Punera D, Kant T. An assessment of refined hierarchical kinematic models for the bending and free vibration analyses of laminated and functionally graded sandwich cylindrical panels. J Sandw Struct Mater. 2021;23(6):2506-46. https://doi.org/10.1177/10996 36220909826.
  • 16. Reddy JN, Liu CF. A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci. 1985;23(3):319-30. https://doi.org/10.1016/0020-7225(85)90051-5.
  • 17. Lu H, Zhu Y, Yin M, Yin G, Xie L. Multimodal fusion convolutional neural network with cross-attention mechanism for internal defect detection of magnetic tile. IEEE Access. 2022;10:60876– 86. https://doi.org/10.1109/ACCESS.2022.3180725.
  • 18. Khalili SMR, Davar A, Malekzadeh Fard K. Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. Int J Mech Sci. 2012;56(1):1-25. https://doi.org/10.1016/j.ijmecsci.2011.11.002.
  • 19. Punera D, Kant T, Desai YM. Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models. J Therm Stress. 2017. https://doi.org/10.1080/01495739.2017.1373379.
  • 20. Thai H-T, Kim S-E. A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos Struct. 2013;96:165-73. https://doi.org/10.1016/j. compstruct.2012.08.025.
  • 21. Mohammadi M, Aref M, Dimitri R, Tornabene F. Higher-order thermo-elastic analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials. 2019;9(1):1. https://doi.org/10.3390/nano9010079.
  • 22. Kong L, Liu G. Synchrotron-based infrared microspectroscopy under high pressure: an introduction. Matter Radiat Extremes. 2021;6(6):68202. https://doi.org/10.1063/5.0071856. 23. Yang K, Guan J, Shao Z, Ritchie RO. Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. J Mech Behavior Biomed Mater. 2020;110: 103942. https://doi.org/10.1016/j.jmbbm.2020.103942.
  • 24. Tian L, Li M, Li L, Li D, Bai C. Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Walled Struct. 2023;182: 110219. https://doi.org/10.1016/j. tws.2022.110219.
  • 25. Kumar P, Harsha SP. Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric efect. Mater Today Commun. 2022;32: 103929. https://doi.org/10. 1016/j.mtcomm.2022.103929.
  • 26. Zhao S, Zhang Y, Zhang Y, Yang J, Kitipornchai S. Vibrational characteristics of functionally graded graphene origami-enabled auxetic metamaterial beams based on machine learning assisted models. Aer Sci Tech. 2022;130: 107906. https://doi.org/10. 1016/j.ast.2022.107906.
  • 27. Xu J, Liu J, Zhang Z, Wu X. Spatial-temporal transformation for primary and secondary instabilities in weakly non-parallel shear flows. J Fluid Mech. 2023;959:A21. https://doi.org/10.1017/jfm. 2023.67.
  • 28. Dat ND, Thanh NV, MinhAnh V, Duc ND. Vibration and nonlinear dynamic analysis of sandwich FG-CNTRC plate with porous core layer. Mech Adv Mater Struct. 2022;29(10):1431-48. https:// doi.org/10.1080/15376494.2020.1822476.
  • 29. Shi H, Song Z, Bai X, Hu Y, Li T, Zhang K. A novel digital twin model for dynamical updating and real-time mapping of local defect extension in rolling bearings. Mech Syst Signal Proc. 2023;193: 110255. https://doi.org/10.1016/j.ymssp.2023.110255.
  • 30. Mirzaei M, Kiani Y. Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos Struct. 2016;142:45-56. https://doi.org/10.1016/j.compstruct.2015.12. 071.
  • 31. Keleshteri MM, Jelovica J. Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos Struct. 2020;239: 112028. https://doi.org/10.1016/j.compstruct.2020.112028.
  • 32. Li J, Chen M, Li Z. Improved soil–structure interaction model considering time-lag effect. Comput Geotech. 2022;148: 104835. https:// doi.org/10.1016/j.compgeo. 2022. 104835.
  • 33. Liew AA, K. M. Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity. Compos Struct. 2014;113:23-30.
  • 34. Kim Y, Kim I, Park J. An approximate formulation for the progressive failure analysis of a composite lattice cylindrical panel in aerospace applications. Aerosp Sci Technol. 2020;106: 106212. https://doi.org/10.1016/j.ast. 2020.106212.
  • 35. Sun T, Peng L, Ji X, Li X, Rodellar J. A half-cycle negativestiffness damping model and device development. Struct Cont Health Monit. 2023. https:// doi.org/10.1155/2023/46801 05.
  • 36. Armenŕkas AE, Gazis DC, Herrmann G. Free vibrations of circular cylindrical shells. 1st ed. New York: Pergamon; 2013.
  • 37. Fu Q, Luo K, Song Y, Zhang M, Zhang S, Zhan J, Li Y. Study of sea fog environment polarization transmission characteristics. Appl Sci. 2022. https:// doi. org/10.3390/ app12 178892.
  • 38. Niu Y, Zhang W, Guo XY. Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets. Eur J Mech ASolids. 2019;77: 103798. https://doi.org/10.1016/j.euromechsol. 2019.103798.
  • 39. Zhang LW, Lei ZX, Liew KM, Yu JL. Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct. 2014;111:205-12. https://doi.org/10.1016/j.comps.truct. 2013.12.035.
  • 40. Zarastvand MR, Asadijafari MH, Talebitooti R. Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation. Aer Sci Tech. 2021;112: 106620. https://doi.org/10.1016/j.ast.2021.106620.
  • 41. Loy CT, Lam KY. Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity. J Sound Vib. 1999;226(4):719–37. https:// doi. org/ 10. 1006/ jsvi. 1999. 2310.
  • 42. Soldatos KP, Hadjigeorgiou VP. Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. J Sound Vib. 1990;137(3):369-84. https:// doi.org/ 10. 1016/ 0022- 460X(90) 90805-A.
  • 43. Yao Y, Zhou L, Huang H, Chen Z, Ye Y. Cyclic performance of novel composite beam-to-column connections with reduced beam section fuse elements. Structures. 2023;50:842-58. https:// doi. org/ 10.1016/j.istruc. 2023.02.054.
  • 44. Bai X, Zhang Z, Shi H, Luo Z, Li T. Identification of subsurface mesoscale crack in full ceramic ball bearings based on strain energy theory. Appl Sci. 2023;13(13):7783. https:// doi. org/10.3390/ app13 137783.
  • 45. Zahedan N, Ahmadi H, Liaghat G. Experimental and numerical investigation on the multi-optimization of reinforcing the side members of the vehicle structure. Arch Civ Mech Eng. 2022;22:25. https:// doi. org/ 10.1007/ s43452- 021- 00351-y.
  • 46. Bidgoli EMR, Arefi M. Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simplysupported sandwich plate. Arch Civ Mech Eng. 2023;23:214. https:// doi. org/ 10. 1007/s43452- 023- 00752-1.
  • 47. Huang H, Yao Y, Zhang W, Zhou L. A push-out test on partially encased composite column with different positions of shear studs. Eng Struct. 2023;289: 116343. https:// doi. org/ 10. 1016/j.engst ruct. 2023. 116343.
  • 48. Yang K, Qin N, Yu H, Zhou C, Deng H, Tian W, Guan J. Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths. J Mater Res Tech. 2022; 21 : 2191-202. https:// doi.org/10.1016/j.jmrt. 2022.10.044.
  • 49. Luo C, Wang L, Xie Y, Chen B. A New Conjugate Gradient Method for Moving Force Identification of Vehicle-Bridge System. J Vib Eng Tech. 2022. https://doi.org/10.1007/s42417-022-00824-1.
  • 50. Hao R, Lu Z, Ding H, Chen L. Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis. Int J Mech Sci. 2022;222: 107237. https://doi.org/10.1016/j.ijmec sci.2022.107237.
  • 51. Li H, Liu Y, Zhang H, Qin Z, Wang Z, Deng Y, Xiong J, Wang X, Ha SK. Amplitude-dependent damping characteristics of all composite sandwich plates with a foam-filled hexagon honeycomb core. Mech Syst Signal Proc. 2023;186: 109845. https://doi. org/10.1016/j. ymssp. 2022.109845.
  • 52. Liu Y, Qin Z, Chu F. Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core. Mech Adv Mater Struct. 2022;29(9):1338-47. https://doi.org/10.1080/15376 494.2020.18189 04.
  • 53. Liu Y, Qin Z, Chu F. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermomechanical loads. Int J Mech Sci. 2021;201: 106474. https://doi.org/10.1016/j.ijmec sci. 2021.106474.
  • 54. Liu Y, Qin Z, Chu F. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 2021;104:1007-21. https://doi.org/10.1007/s11071- 021- 06358-7.
  • 55. Liu Y, Qin Z, Chu F. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Appl Math Mech-Engl Ed. 2021;42:805-18. https:// doi. org/10.1007/s10483- 021-2740-7.
  • 56. Arefi M, Zenkour AM. Transient analysis of a three-layer micro-beam subjected to electric potential. Int J Smart Nano Mater. 2017;8(1):20-40.
  • 57. Arefi M, Kiani M, Zenkour AM. Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST. J Sandw Struct Mater. 2020;22(1):55-86.
  • 58. Arefi M, Bidgoli EMR, Dimitri R, Tornabene F, Reddy JN. Sizedependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations. Appl Sci. 2019;9(8):1580.
  • 59. Tüfekci M, Özkal B, Maharaj C, Liu H, Dear JP, Salles L. Strainrate-dependent mechanics and impact performance of epoxybased nanocomposites. Compos Sci Tech. 2023;233: 109870. https:// doi. org/10.1016/j. comps citech. 2022. 109870.
  • 60. Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater. 1987;6(2):147-57.
  • 61. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions / Contrainte moyenne dans la matrice et energie elastique moyenne des materiaux contenant des inclusions imparfaites. Die mittlere spannung in der matrix und die mittlere elastische energie von materialien mit einschlüssen. Acta Metall. 1973;21(5):571-4.
  • 62. Acarer S, Pir İ, Tüfekci M, Erkoç T, Öztekin V, Dikicioğlu C, Demirkol GT, Durak SG, Özçoban MŞ, Çoban TYT, et al. Characterisation and Mechanical Modelling of Polyacrylonitrile-Based Nanocomposite Membranes Reinforced with Silica Nanoparticles. Nanomaterials. 2022;12:3721. https://doi.org/10.3390/nano122137 21.
  • 63. Tüfekci M, Durak SG, Pir İ, Acar TO, Demirkol GT, Tüfekci N. Manufacturing, Characterisation and Mechanical Analysis of Polyacrylonitrile Membranes. Polymers. 2020;12:2378. https://doi. org/10.3390/polym12102 378.
  • 64. Tüfekci M, Genel ÖE, Tatar A, Tüfekci E. Dynamic analysis of composite wind turbine blades as beams: an analytical and numerical study. Vibration. 2021;4:1–15. https://doi.org/10. 3390/ vibration4 010001.
  • 65. Liu L, Huang Z. A Note on mori-tanaka’s method. Acta Mech Solida Sin. 2014;27(3):234–44. https:// doi. org/10.1016/S0894-9166(14) 60033-1.
  • 66. Ding H-X, Eltaher MA, She G-L. Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections. Aer Sci Tech. 2023;140:108435.
  • 67. Ghandourah EE, Daikh AA, Khatir S, Alhawsawi AM, Banoqitah EM, Eltaher MA. A dynamic analysis of porous coated functionally graded nanoshells rested on viscoelastic medium. Mathematics. 2023;11(10):2407.
  • 68. Melaibari A, Daikh AA, Basha M, Wagih A, Othman R, Almitani KH, Hamed MA, Abdelrahman A, Eltaher MA. A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries. Mathematics. 2022;10(3):408.
  • 69. Tian L, Jin B, Li L. Axial Compressive Mechanical Behaviors of a Double-Layer Member. J Struct Eng. 2023;149(8):4023110. https://doi. org/10.1061/ JSENDH.STENG- 12175.
  • 70. Zhang C. The active rotary inertia driver system for flutter vibration control of bridges and various promising applications. Sci China Tech Sci. 2022. https://doi.org/10.1007/s11431- 022-2228-0.
  • 71. Yang Y, Lin B, Zhang W. Experimental and numerical investigation of an arch-beam joint for an arch bridge. Arch Civ Mech Eng. 2023;23(2):101. https://doi.org/10.1007/ s43452- 023- 00645-3.
  • 72. Zhang Y, Zhao P, Lu Q, Zhang Y, Lei H, Yu C, Yu J. Functional additive manufacturing of large-size meta structure with efficient electromagnetic absorption and mechanical adaptation. Compos Part A: Appl Sci Manufact. 2023;173: 107652.
  • 73. Bai X, Shi H, Zhang K, Zhang X, Wu Y. Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system. J Sound Vib. 2022;529:116967. https:// doi. org/ 10. 1016/j. jsv.2022.116967.
  • 74. Saeedi S, Kholdi M, Loghman A, et al. Axisymmetric thermoelastic analysis of long cylinder made of FGM reinforced by aluminum and silicone carbide using DQM. Arch Civ Mech Eng. 2022;22:48. https:// doi.org/10.1007/ s43452- 022-00376-x.
  • 75. Kholdi M, Saeedi S, Zargar Moradi SA, et al. A successive approximation method for thermo-elasto-plastic analysis of are inforced functionally graded rotating disc. Archiv Civ Mech Eng. 2022;22:2. https:// doi. org/10.1007/s43452- 021-00321-4.
  • 76. Arefi M, Mannani S, Collini L. Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanica considering thickness stretching. Archi Civ Mech Eng. 2022;22:196. https:// doi. org/10.1007/ s43452- 022-00514-5.
  • 77. Bidgoli EMR, Arefi M. Effect of porosity and characteristics of carbon nanotube on the nonlinear characteristics of a simply supported sandwich plate. Archiv Civ Mech Eng. 2023;23:214. https://doi.org/10.1007/s43452- 023-00752-1.
  • 78. Wang G, Zhang Y, Arefi M. Three-dimensional exact elastic analysis of nanoplates. Archi Civ Mech Eng. 2021;21:91. https://doi.org/10.1007/ s43452-021-00247-x.
  • 79. Qiao W, Fu Z, Du M, Wei N, Liu E. Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm. Energy. 2023;274: 127376. https://doi.org/10.1016/j. energy. 2023.127376.
  • 80. Liu D, Li C, Dong L, Qin A, Zhang Y, Yang M, Gao T, Wang X, Liu M, Cui X, Ali HM, Sharma S. Kinematics and improved surface roughness model in milling. Int J Adv Manuf Technol. 2022. https:// doi.org/10.1007/s00170-022-10729-8.
  • 81. Li LY, Zhang YB, Cui X, Said Z, Sharma S, Liu MZ, Gao T, Zhou ZM, Wang XM, Li CH. Mechanical behavior and modeling of grinding force: a comparative analysis. J Manuf Process. 2023;102:921-54. https://doi.org/10.1016/j.jmapro.2023.07.074.
Identyfikator YADDA
bwmeta1.element.baztech-cd634631-912a-4e48-8bf7-b9bc4f6a5ee7