PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of infrared thermography to non-contact testing of varistors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Testing of varistors using thermography was carried out in order to assess their protective properties against possible overvoltage phenomena in the form of high-level voltage surges. An advantage of the thermography technique is non-contact temperature measurement. It was proposed to assess the properties of varistors working in electronic devices as protective elements, on the basis of estimating temperature increments on varistor surfaces, registered by an infrared camera during surge resistance tests with standard voltage levels. To determine acceptable temperature increments on a tested varistor, preliminary testing was performed of P22Z1 (Littelfuse) and S07K14 (EPCOS) type varistors, working first at a constant load and presently during surge tests,. The thermographic test results were compared with measured varistor capacity values before and after tests. It was found that recording with thermography temperature increments greater than 6°C for both P22Z1 and S07K14 varistor types detects total or partial loss of varistor protective properties. The test results were confirmed by assessment of protective properties of varistors working in output circuits of low nominal voltage devices.
Słowa kluczowe
Rocznik
Strony
677--688
Opis fizyczny
Bibliogr. 8 poz., rys., tab., wykr.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Minkina, W., Dudzik, S. (2009). Infrared thermography - errors and uncertainties. John Wiley&Sons Ltd, Chichester.
  • [2] Kaplan, H. (2007). Practical Applications of Infrared Thermal Sensing and Imaging Equipment. 3rd ed., SPIE.
  • [3] Vollmer, M., Mölmann, K. P. (2011). Infrared Thermal Imaging: Fundamentals, Research and Applications. John Wiley & Sons. Wiley-VCH Verlag Gmbh&Co. KGaA.
  • [4] Więcek, B., De Mey, G. (2011). Infrared thermovision; foundations and applications. PAK Warszawa.
  • [5] Granqvist, C. G., Green, S., Jonson, E. K., Marsal, R., Niklasson, G. A., Roos, A., Topalian, Z., Azens, A., Georén, P., Gustavsson, G., Karmhag, R., Smulko, J., Kish, L.B. (2008). Electrochromic foil-based devices: Optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise. Thin Solid Films, 516(17), 5921-5926.
  • [6] Smulko, J. (2006). Methods of electrochemical noise analysis for investigation of corrosion processes. Fluctuation and Noise Letters, 6(02), R1-R9, DOI: 10.1142/S0219477506003252.
  • [7] Smulko, J., Darowicki, K., Zieliński, A. (2002). Detection of random transients caused by pitting corrosion. Electrochimica acta, 47(8), 1297-1303.
  • [8] Jaroszewski, M., Wieczorek, K., et al. (2004). Capacitance Changes in Degraded Metal Oxide Varistors. International Conference on Solid Dielectrics, Toulouse, France, July 5-9, 736-738.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd5941db-0d0a-4bed-af24-0f881d69184d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.