PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of composite materials with giant magnetostriction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper concerns manufacturing and researching a new group of the magnetostrictive composite materials, consisting Tb0.3Dy0.7Fe1.9 particles in different polymer matrix. Design/methodology/approach: The following investigation studies have been carried out: the structures of the Tb0.3Dy0.7Fe1.9 powders, the topography of composite materials fractures with the use of electron scanning microscopy; chemical composition of the Tb0.3Dy0.7Fe1.9 powders using the EDS method; phase composition of the Tb0.3Dy0.7Fe1.9 powders and composite materials using X-ray diffraction; as well as properties of the composite materials with polyurethane matrix reinforced with Tb0.3Dy0.7Fe1.9 particles including: density, thermal conductivity (in magnetic field also), electrical and magnetic properties, as well as magnetostriction in magnetic field intensity up to 800 kA/m using a three terminal capacitance technique. Findings: Based on the examination carried out it was found that the highest magnetostriction equals to 805∙10-6 (with magnetic field intensity of 766 kA/m) characterizes a composite material with polyurethane matrix, reinforced with Tb0.3Dy0.7Fe1.9 powder of 20% volume fraction and particles size in the range of 38-106 μm. Simultaneously, the materials is characterized with coercion intensity Hc=5.39 kA/m, remanence Br=0.013 T and magnetic permeability μr=1.13. Moreover, it was found that the maximum magnetostriction value for this material assumes values approximate to the magnetostriction of monolithic Tb0.3Dy0.7Fe1.9 alloy. Additionally, it was confirmed that the correlation exists between the diversification of the volume fraction of Tb0.3Dy0.7Fe1.9 powder in the matrix, its particle distribution and the maximum magnetostriction and magnetic properties of the developed composite materials. The key factor determining the energy transfer efficiency between Tb0.3Dy0.7Fe1.9 and matrix is – in addition to the size and volume fraction of the magnetostrictive particles in the matrix – the method of combining those two phases. Originality/value: The paper presents the research involving the composite material with giant magnetostriction.
Rocznik
Strony
5--23
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, Principle of materials science, WNT, Warsaw, 2006 (in Polish).
  • [2] D.C. Jiles, Recent advances and future directions in magnetic materials, Acta Materialia 51 (2003) 5907-5939.
  • [3] E. Świtoński, A. Mężyk, W. Klein, Application of smart materials in vibration control systems, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 291-296.
  • [4] D.D.L. Chung, Functional Materials. Electrical, Dielectric, Electromagnetic, Optical and Magnetic Applications, World Scientific Publishing, Singapore, 2010.
  • [5] K. Salonitis, J. Pandremenos, J. Paralikas, G. Chryssolouris, Multifunctional materials: engineering applications and processing challenges, International Journal of Advanced Manufacturing Technology 49 (2010) 803-826.
  • [6] T. Takagi, Present State and Future of the Intelligent Materials and Systems in Japan, Journal of Intelligent Material Systems and Structures 10/7 (1999) 575-581.
  • [7] S. Wojciechowski, A. Boczkowska, Intelligent Materials 2004, Archives of Metallurgy and Materials 49/4 (2004) 723-734.
  • [8] N.N. Sarawate, M.J. Dapino, A dynamic actuation model for magnetostrictive materials, Smart Materials and Structures 17 (2008) 065013.
  • [9] E. Du Tremolet De Lachesserie, Magnetostriction: Theory and applications of Magnetoelasticity, CRC Press, Boca Raton, 1993.
  • [10] H. Szymczak, From almost zero magnetostriction to giant magnetostrictive effects: recent results, Journal of Magnetism and Magnetic Materials 200 (1999) 425-438.
  • [11] K.H.J. Buschow (ed.), Handbook of Magnetic Materials, Elsevier, 2001.
  • [12] A.G. Jenner, R.J.E. Smith, A.J. Wilkinson, R.D. Greenough, Actuation and transduction by giant magnetostrictive alloys, Mechatronics 10 (2000) 457-466.
  • [13] W. Bodnar, M. Szklarska-Łukasik, P. Stoch, P. Zachariasz, J. Pszczoła, J. Suwalski, Hyperfine interactions in Tb0.27Dy0.73(Fe1-xCox)2 compounds at 77 K, Nukleonika 54/4 (2009) 227-232.
  • [14] R.M. Bozorth, Ferromagnetism, D. Van Nostrand- Reinhold, 1959.
  • [15] B.D. Cullity, C.D. Graham, Introduction to magnetic materials, Wiley-IEEE Press, 2008.
  • [16] O.Y. Kwon, J.C. Kim, Y.D. Kwon, D.J. Yang, S.H. Lee, Z.H. Lee, S.H. Hong, Magnetostriction and magnetomechanical properties of grain-oriented Tb0.33Dy0.67Fey/Epoxy composite, Applied Physics A 80 (2005) 1563-1566.
  • [17] M.J. Sablik, D.C. Jiles: Coupled Magnetoelastic Theory of Magnetic and Magnetostrictive Hysteresis, IEEE Transaction on Magnetics 29/3 (1993) 2113-2123.
  • [18] A. Ślawska-Waniewska, H.K. Lachowicz, Magnetostriction in soft magnetic nanocrystalline materials, Scripta Materialia 48 (2003) 889-894.
  • [19] N.B. Ekreem, A.G. Olabi, T. Prescott, A. Rafferty, M.S.J. Hashmi, An overview of magnetostriction, its use and methods to measure these properties, Journal of Materials Processing Technology 191 (2007) 96-101.
  • [20] E. Hrisoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, Journal of Magnetism and Magnetic Materials 316 (2007) 372-378.
  • [21] Z.J. Guo, S.C. Busbridge, Z.D. Zhang, B.W. Wang, A.R. Piercy, Dynamic magnetic and magnetoelastic properties of epoxy-TbFe2 composites, Journal of Magnetism and Magnetic Materials 239 (2002) 554-556.
  • [22] Y.V. Yang, Y.Y. Huang, M.J. Yongmei, Effects of magnetocrystalline anisotropy constant K2 on magnetization and magnetostriction of Terfenol-D, Applied Physics Letters 98 (2011) 012503.
  • [23] G. Engdahl, Handbook of Giant Magnetostrictive Materials, Academic Press, San Diego, 2000.
  • [24] G. Korznikova, Phenomena of magnetostriction and their technical application, Archives of metallurgy and materials 49/4 (2004) 803-809.
  • [25] R.C. Smith, M.J. Dapino, S. Seelecke, Free energy model for hysteresis in magnetostrictive transducers, Journal of Applied Physics 93/1 (2003) 458-466.
  • [26] A.E. Clark, H.S. Belson, N. Tamagawa, Magnetostriction anisotropy in cubic rare earth-Fe2 compounds, Proceedings of the AIP Conference 10 (1973) 749-53.
  • [27] T. Okutani, H. Nagai, M. Mamiya, M. Castillo, Synthesis of structure controlled magnetostrictive materials by use of microgravity and magnetic field, Advances in Science and Technology 45 (2006) 875-884.
  • [28] W.J. Ren, S.W. Or, H.L.W. Chan, Z.D. Zhang, Magnetoelastic properties of polymer-bonded Sm0.88Dy0.12Fe1.93 pseudo 1-3 composites, Journal of Magnetism and Magnetic Materials 293 (2005) 908-912.
  • [29] J.W. Xie, D. Fort, J.S. Abell, The preparation, microstructures and magnetostrictive properties of Samfenol-D, Journal of Alloys and Compounds 366 (2004) 241-247.
  • [30] G.P. McKnight, G.P. Carman, Large magnetostriction in Terfenol-D particulate composites with preferred <112> orientation, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, Proceeding of SPIE 4333 (2001) 178-183.
  • [31] Y. Pei, X. Feng, X. Gao, D. Fang, Anisotropic magnetostriction for Tb0.3Dy0.7Fe1.95 alloys under magetomechanical loading, Journal of Alloys and Compounds 476 (2009) 556-559.
  • [32] T. Okutani, H. Nagai, M. Mamiya: Synthesis of High-performance Magnetostrictive Tb0.3Dy0.7Fe2 by unidirectional solidification in microgravity, Interdisciplinary Transport Phenomena 1161 (2009) 437-451.
  • [33] ETREMA Products, Inc. (www.etrema.com)
  • [34] X. Guan, X. Dong, J. Ou, Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields, Journal of Magnetism and Magnetic Materials 321 (2009) 2742-2748.
  • [35] J. Tian, Z. Zuo, D. Pan, S. Zhang, Bonded Terfenol- D composites with low eddy current loss and high magnetostriction, Rare Metals 29/6 (2010) 579-582.
  • [36] S. Guruswamy, M.R. Loveless, N. Srisukhumbowornchai, M.K. McCarter, J.P. Teter, Processing of Terfenol-D alloy based magnetostrictive composites by dynamic compaction, IEEE Transactions on Magnetics 36/5 (2000) 3219-3222.
  • [37] J. Liu, W. Ren, D. Li, N. Sun, X. Zhao, J. Li, Z. Zhang, Magnetic transitions and magnetostrictive properties of TbxDy1-x(Fe0.8Co0.2)2 (0.20≤x≤0.40), Physical Review B 75 (2007) 064429.
  • [38] H.Y. Liu, Y.X. Li, J.P. Qu, B.D. Liu, H.Y. Guo, F.B. Meng, L. Hu, S.Y. Li, Z.X. Zhang, H. Qin, J.L. Chen, H.W. Zhao, G.H. Wu, Study on the preparation techniques and properties of bonded magnetostrictive materials, Journal of Applied Physics 91/10 (2002) 8213-8215.
  • [39] J.B. Restorff, M. Wun-Fogle, A.E. Clark, Temperature and stress dependences of the magnetostriction in ternary and quaternary Terfenol alloys, Journal of Applied Physics 87/9 (2000) 5786- 5788.
  • [40] W. Bodnar, P. Stoch, J. Chmist, J. Pszczoła, P. Zachariasz, J. Suwalski, Electrical resistivity and Mössbauer effect investigations on Tb0.27Dy0.73(Mn1- xFex)2 intermetallics, Journal of Alloys and Compounds 505 (2010) 393-399.
  • [41] A. Speliotis, O. Kalogirou, N. Vouroutzis, D. Niarchos, Magnetostrictive properties of amorphous and nanocrystalline TbDyFe films with Nb and Zr additives, Journal of Magnetism and Magnetic Materials 187 (1998) 17-22.
  • [42] X. Zheng, P. Zhang, F. Li, Z. Cheng, B. Shen, A magnetic, magnetostrictive and Mössbauer study of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys, Journal of Magnetism and Magnetic Materials 321/23 (2009) 3842-3846.
  • [43] Y. Chen, J.E. Snyder, C.R. Schwichtenberg, K.W. Dennis, D.K. Falzgraf, W. McCallum, D.C. Jiles, Effect of the elastic modulus of the matrix on magnetostrictive strain in composites, Journal of Applied Physics 74/8 (1999) 1159-1161.
  • [44] S.C. Busbridge, N. Kurdiyeh, Z.J. Guo, B.W. Wang, A.R. Piercy, Effect of the elastic modulus of the matrix on the coupling of magnetostrictive composites, IEEE Transactions on Magnetics 36/5 (2000) 3235-3237.
  • [45] Z.J. Guo, S.C. Busbridge, A.R. Piercy, Z.D. Zhang, X.G. Zhao, B.W. Wang, Effective magnetostriction and magnetomechanical coupling of Terfenol-D composites, Applied Physics Letters 78/22 (2001) 3490-3492.
  • [46] G. Altin, K.K. Ho, Ch.P. Henry, G.P. Carman, Static properties of crystallographically aligned Terfenol- D/polymer composites, Journal of Applied Physics 101 (2007) 033537.
  • [47] J. Kaleta, D. Lewandowski, R. Mech, P. Gęsior, Magnetomechanical properties of Terfenol-D powder composites, Solid State Phenomena 154 (2009) 35- 40.
  • [48] Y. Chen, Z. Xia, F. Ellyin, Evolution of residual stresses induced during curing processing using a viscoelastic micromechanical model, Journal of Composite Materials 35 (2001) 522-542.
  • [49] A.B. Flatau, M.J. Dapino, F.T. Calkins, Magnetostrictive Composites, Comprehensive Composite Materials 5 (2003) 563-574.
  • [50] C.W. Nan, Effective magnetostriction of magnetostrictive composites, Applied Physics Letters 72/22 (1998) 2897-2900.
  • [51] L.A. Dobrzański, A. Tomiczek, A. Nabiałek, Z. Stokłosa, Magnetic properties of magnetostrictive Tb0.3Dy0.7Fe1.9/polyurethane composite materials, Archives of Materials Science and Engineering 51/2 (2011) 97-102.
  • [52] X. Dong, M. Qi, X. Guan, J. Ou, Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: Enhanced uniform magnetostrictive and mechanical properties using a dry process, Journal of Magnetism and Magnetic Materials 323 (2011) 351-355.
  • [53] T.A. Duenas, G.P. Carman, Particle distribution study for low-volume fraction magnetostrictive composites, Journal of Applied Physics 90/5 (2001) 2433-2439.
  • [54] J. Hudson, S.C. Busbridge, A.R. Piercy, Magnetomechanical coupling and elastic moduli of polymerbonded Terfenol composites, Journal of Applied Physics 83/11 (1998) 7255-7257.
  • [55] S.H. Lim, S.R. Kim, S.Y. Kang, J.K. Park, J.T. Nam, D. Son, Magnetostrictive properties of polymerbonded Terfenol-D composites, Journal of Magnetism and Magnetic Materials 191 (1999) 113- 121.
  • [56] L.A. Dobrzański, A.E. Tomiczek, A. Szewczyk, K. Piotrowski, M.U. Gutowska, J. Więckowski, Physical properties of magnetostrictive composite materials with the polyurethane matrix, Archives of Materials Science and Engineering 57/1 (2012) 21- 27.
  • [57] N. Neressian, S.W. Or, G.P. Carman, W. Choe, H.B. Radousky, Hollow and solid spherical magnetostrictive particulate composites, Journal of Applied Physics 96/6 (2004) 3362-3365.
  • [58] M. Pasquale, S.H. Lim, High frequency magnetic properties of polymer-bonded Terfenol-D composites, Journal of Applied Physics 85/8 (1999) 4633-4635.
  • [59] L. Sandlund, M. Fahlander, T. Cedell, A.E. Clark, J.B. Restrorff, M. Wun-Fogle, Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D, Journal of Applied Physics 75/10 (1994) 5656-5658.
  • [60] M. Shanmugham, H. Bailey, W.D. Armstrong, Performance loss of Terfenol-D particle epoxy composites under cyclic magneto-mechanical loading at the matrix glass transition start and finish temperature, Materials Science and Engineering A369 (2004) 267-274.
  • [61] J.C. Yan, S.X. Lü, X.Q. Xie, Z.G. Zhou, S.Q. Yang, S.Y. He, An alignment evaluation method for polycrystalline Terfenol-D based on magnetostriction effect, Journal of Magnetism and Magnetic Materials 234 (2001) 431-436.
  • [62] Ch.Y. Lo, S.W. Or, H.L.W. Chan, Large magnetostriction in epoxy-bonded Terfenol-D continuous – fiber composite with <112> crystallographic orientation, IEEE Transactions on Magnetic 10/42 (2006) 3111-31313.
  • [63] S.W. Or, T. Li, H.L.W. Chan, Dynamic magnetomechanical properties of Terfenol-D/epoxy pseudo 1-3 composites, Journal of Applied Physics 97 (2005) 10M308.
  • [64] S.W. Or, C.S. Yung, C.Y. Lo, A 64-kHz sandwich transducer fabricated using pseudo 1-3 magnetostrictive composite, IEEE Transactions on Magnetic 42/1 (2006) 47-50.
  • [65] C. Rodríguez, A. Barrio, I. Orue, J.L. Vilas, L.M. León, J.M. Barandiarán, M.L.R. Fdez-Gubieda, High magnetostriction polymer-bonded Terfenol-D composites, Sensors and Actuators A 142 (2008) 538-541.
  • [66] N. Neressian, S.W. Or, G.P. Carman, Magnetothermo- mechanical characterization of 1-3 type polymer-bonded Terfenol-D composites, Journal of Magnetism and Magnetic Materials 263 (2003) 101-112.
  • [67] N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Dielectric, ferroelectric, magnetic and magnetoelectric properties of multiferroic laminated composites, Physical Review 68 (2003) 224103 1-6.
  • [68] C.A. Kerrigan, K.K. Ho, K.P. Mohanchandra, G.P. Carman, Sputter deposition and analysis of thin film Nitinol/Terfenol-D multilaminate for vibration damping, Smart Materials and Structures 18/1 (2009) 015007.
  • [69] N.J. Grabham, S.P. Beeby, N.M. White: Effects of the binder material on the mechanical properties of thick-film magnetostrictive materials, Sensors and Actuators A 110 (2004) 365-370.
  • [70] X. Lu, H. Li, Magnetic properties of Terfenol-D film on a compliant substrate, Journal of Magnetism and Magnetic Materials 322 (2010) 2113-2116.
  • [71] J. Ma, D.T. O’Brien, D. Kovar, Amorphous Terfenol-D films using nanosecond pulsed laser deposition, Thin Solid Films 518 (2009) 319-323.
  • [72] S. Peng, P. Yang, W. Cai, X. Lu, J. Liu, F. Yan, M. Xu, H. Zhang, J. Wang, J. Zhu, Magnetoelectric study in Terfenol-D/Tb2(MoO4)3 bilayer composite, Journal of Applied Physics 105 (2009) 061622.
  • [73] F. Fang, S.C. Shan, W. Yang, A multipeak phenomenon of magetoelectric coupling in Terfenol- D/P(VDF-TrFE)/Terfenol-D laminates, Journal of Applied Physics 108 (2010) 104506-1-104506-5.
  • [74] L.G. Gancedo, S.C. Busbridge, T.W. Button, Enhancement of magnetostriction in internallybiased Terfenol-D 2-2 composites, IEEE Transactions on Magnetics 44/11 (2008) 3028-3031.
  • [75] C.Y. Lo, S.H. Choy, S.W. Or, H.L.W. Chan, Magnetoelectric effect in lead-free BNKLBT ceramic/ terfenol-D continue fiber composite laminates, Journal of Applied Physics 107/9 (2010) 093907.
  • [76] C.W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y.H. Lin, L.J. Dong, C.X. Xiong, A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer, Applied Physics Letters 81/20 (2002) 3831-3833.
  • [77] J. Zhai, J. Li, D. Viehland, M.I. Bichurin, Large magnetoelectric susceptibility: the fundamental property of piezoelectric and magnetostrictive laminated composites, Journal of Applied Physics 101 (2007) 014102.
  • [78] J.Ch. Kim, O.Y. Kwon, Z.H. Lee, Unidirectional magnetostrictive Terfenol/epoxy composite, Applied Physics Letters 84/12 (2004) 2130-2132.
  • [79] O.Y. Kwon, K.H. Kim, M.K. Yu, S.H. Hong, Fabrication Process and Magnetostriction of Infiltrated Terfenol-D/Epoxy Composite, Key Engineering Materials 334-335 (2007) 1121-1124.
  • [80] X. Dong, M. Qi, X. Guan, J. Ou, Microstructure analysis of magnetostrictive composites, Polymer Testing 29 (2010) 369-374.
  • [81] L.A. Dobrzański, A. Tomiczek, B. Ziębowicz, A. Nabiałek, Influence of the manufacturing technology on the properties of magnetostrictive composite materials, Proceedings of the 8th International Conference “Industrial Tools and Material Processing Technologies” ICIT & MPT, 2011, Ljubljana, 303-308.
  • [82] L.A. Dobrzański, A. Wydrzyńska, O. Iesenchuk, R. Żuberek, Magnetostrictive properties of epoxybonded Tb0.3Dy0.7Fe1.9 composites, Advanced Materials Research 89-91 (2010) 633-638.
  • [83] SMOOTH-ON, Inc. (www.smooth-on.com)
  • [84] PN-EN ISO 1183-1:2004. Plastics – Methods for determining the density of non-porous plastics (in Polish).
  • [85] B. Węgliński, Soft Magnetic Powder Composites – Dielectromagnetics and Magnetodielectrics, Reviews on P/M and Physical Ceramics 4/2 (1990) 79-154.
  • [86] L.A. Dobrzański, R. Nowosielski, J. Konieczny, A. Przybył, J. Wysłocki, Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix, Journal of Magnetism and Magnetic Materials 290-291 (2005) 1510-1512.
  • [87] L.A. Dobrzański, A.E. Tomiczek, A.W. Pacyna, Properties of magnetostrictive composite materials with polyurethane matrix reinforced with Terfenol-D particles, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 316-322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd52a272-f819-4c11-bea0-28fdeb886a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.