PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membrane gas separation module with pulsed retentate for low-permeable component recovery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the experimentalstudy of a novel unsteady-statemembrane gas separation approachfor recovery of a slow-permeant component in the membrane module with periodical retentate with-drawals. The case study consisted in the separation of binary test mixtures based on the fast-permeantmain component (N2O, C2H2) and the slow-permeant impurity (1% vol. of N2)using a radial counter-current membrane module. The novel semi-batch withdrawal technique was shown to intensify theseparation process and provide up to 40% increase in separation efficiency compared to a steady-stateoperation of the same productivity.
Rocznik
Strony
57–--65
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
  • Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department,Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia
Bibliografia
  • 1. Akhmetshina A.I., Gumerova O.R., Atlaskin A.A., Petukhov A.N., Sazanova T.S., Yanbikov N.R., Nyuchev A.V.,Razov E.N., Vorotyntsev I.V., 2017. Permeability and selectivity of acid gases in supported conventional andnovel imidazolium-based ionic liquid membranes.Sep. Purif. Technol., 176, 92–106. DOI: 10.1016/j.seppur.2016.11.074
  • 2. Atlaskin A.A., Trubyanov M.M., Yanbikov N.R., VorotyntsevA.V., Drozdov P.N., Vorotyntsev V.M., Vorotynt-sev I.V., 2019. Comprehensive experimental study of membrane cascades type of “continuous membrane column”for gases high-purification.J. Memb. Sci., 572, 92–101. DOI: 10.1016/j.memsci.2018.10.079.
  • 3. Baker R.W., Freeman B., Kniep J., Wei X., Merkel T., 2017. CO2capture from natural gas power plants usingselective exhaust gas recycle membrane designs.Int. J. Greenhouse Gas Control, 66, 35–47. DOI: 10.1016/j.ijggc.2017.08.016.
  • 4. Castel C., Wang L., Corriou J.P., Favre E., 2018. Steady vs unsteady membrane gas separation processes.Chem.Eng. Sci., 183, 136–147. DOI: 10.1016/j.ces.2018.03.013.
  • 5. Chen Y., Lawless D., Feng X., 2014. Pressure-vacuum swing permeation: A novel process mode for membraneseparation of gases.Sep. Purif. Technol., 125, 301–310. DOI: 10.1016/j.seppur.2014.01.053.
  • 6. De Almeida V.F., Hart K.J., 2017. Analysis of gas membrane ultra-high purification of small quantities of mono-isotopic silane.J. Memb. Sci., 527, 164–179. DOI: 10.1016/j.memsci.2016.12.049.
  • 7. Drozdov P.N., Kirillov Y.P., Kolotilov E.Y., Vorotyntsev I.V., 2002. High purification of gas in radial membraneelement.Desalination, 146, 249–254. DOI: 10.1016/S0011-9164(02)00482-4.
  • 8. Drozdov P.N., Vorotyntsev I.V., 2003. Closed mode of gas-separation membrane modules.Theor. Found. Chem.Eng., 37, 491–495. DOI: 10.1023/A:1026046810040.
  • 9. Friess K., Lanč M., Pilnïček K., Fïla V., Vopička O., Sedlïkovï Z., Cowan M.G., McDanel W.M., Noble R.D.,Gin D.L., Izak P., 2017. CO2/CH4separation performance of ionic-liquid-based epoxy-amine ion gel membranesunder mixed feed conditions relevant to biogas processing.J. Memb. Sci., 528, 64–71. DOI: 10.1016/j.memsci.2017.01.016.
  • 10. Kundu P.K., Chakma A., Feng X., 2016. Unsteady state cyclic pressure-vacuumswing permeation for low pressure niche gas separation applications. Chem. Eng. Res. Des., 109, 505–512. DOI: 10.1016/j.cherd.2016.02.033.
  • 11. Rezakazemi M., Sadrzadeh M., Matsuura T., 2018. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci., 66, 1–41. DOI: 10.1016/j.pecs.2017.11.002.
  • 12. Trubyanov M.M., Drozdov P.N., Atlaskin A.A., Battalov S.V., Puzanov E.S., Vorotyntsev A.V., Petukhov A.N., Vorotyntsev V.M., Vorotyntsev I.V., 2017. Unsteady-state membrane gas separation by novel pulsed retentate mode for improvedmembranemodule performance:Modelling and experimental verification. J.Memb. Sci., 530, 53–64. DOI: 10.1016/j.memsci.2017.01.064.
  • 13. Upton G., Cook I., 2014. A Dictionary of statistics. 3rd edition, Oxford University Press. DOI: 10.1093/acref/9780199679188.001.0001.
  • 14. Valek R.,Maly D., Peter J., Gruart M., 2017. Effect of the preparation conditions on the properties of polyetherimide hollow fibre membranes for gas separation. Desalin. Water Treat., 75, 300–304. DOI: 10.5004/dwt.2017. 20747.
  • 15. Wang L., Corriou J.-P., Castel C., Favre E., 2011. A critical review of cyclic transient membrane gas separation processes: State of the art, opportunities and limitations. J. Memb. Sci., 383, 170–188. DOI: 10.1016/j.memsci.2011.08.052.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd4f7a38-da19-4978-b16f-cbc29879f7a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.