PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exact solutions for the total variation denoising problem of piecewise constant images in dimension one

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for obtaining the exact solution for the total variation denoising problem of piecewise constant images in dimension one is presented. The validity of the algorithm relies on some results concerning the behavior of the solution when the parameter λ in front of the fidelity term varies. Albeit some of them are well-known in the community, here they are proved with simple techniques based on qualitative geometrical properties of the solutions.
Słowa kluczowe
Wydawca
Rocznik
Strony
13--33
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
  • Department of Mathematics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen EH14 4AS, The Netherlands
Bibliografia
  • [1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems 10 (1994), no. 6, 1217-1229.
  • [2] W. K. Allard, Total variation regularization for image denoising. I. Geometric theory, SIAM J. Math. Anal. 39 (2007/08), no. 4, 1150-1190.
  • [3] W. K. Allard, Total variation regularization for image denoising. II. Examples, SIAM J. Imaging Sci. 1 (2008), no. 4, 400-417.
  • [4] W. K. Allard, Total variation regularization for image denoising. III. Examples, SIAM J. Imaging Sci. 2 (2009), no. 2, 532-568.
  • [5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon, New York, 2000.
  • [6] L. Ambrosio and S. Masnou, A direct variational approach to a problem arising in image reconstruction, Interfaces Free Bound. 5 (2003), no. 1, 63-81.
  • [7] L. Ambrosio and S. Masnou, On a variational problem arising in image reconstruction, in: Free Boundary Problems (Trento 2002), Internat. Ser. Numer. Math. 147, Birkhäuser, Basel (2004), 17-26.
  • [8] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, 2nd ed., Appl. Math. Sci. 147, Springer, New York, 2006,
  • [9] G. Bellettini, V. Caselles and M. Novaga, The total variation flow in ℝN, J. Differential Equations 184 (2002), no. 2, 475-525.
  • [10] G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem −div( Du |Du| ) = u in R2, SIAM J. Math. Anal. 36 (2005), no. 4, 1095-1129.
  • [11] M. Benning, C. Brune, M. Burger and J. Müller, Higher-order TV methods—enhancement via Bregman iteration, J. Sci. Comput. 54 (2013), no. 2-3, 269-310.
  • [12] M. Benning and M. Burger, Ground states and singular vectors of convex variational regularization methods, Methods Appl. Anal. 20 (2013), no. 4, 295-334.
  • [13] K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci. 3 (2010), no. 3, 492-526.
  • [14] K. Bredies, K. Kunisch and T. Valkonen, Properties of L1-TGV2: The one-dimensional case, J. Math. Anal. Appl. 398 (2013), no. 1, 438-454.
  • [15] A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul. 4 (2005), no. 2, 490-530.
  • [16] V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul. 6 (2007), no. 3, 879-894.
  • [17] V. Caselles, A. Chambolle and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoam. 27 (2011), no. 1, 233-252.
  • [18] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision 20 (2004), 89-97.
  • [19] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math. 76 (1997), no. 2, 167-188.
  • [20] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision 40 (2011), no. 1, 120-145.
  • [21] T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput. 22 (2000), no. 2, 503-516.
  • [22] T. F. Chan and S. Esedo¯glu, Aspects of total variation regularized L1 function approximation, SIAM J. Appl. Math. 65 (2005), no. 5, 1817-1837.
  • [23] T. F. Chan, S. H. Kang and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM J. Appl. Math. 63 (2002), no. 2, 564-592.
  • [24] T. F. Chan and J. Shen, Image Processing and Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2005.
  • [25] R. Choksi, I. Fonseca and B. Zwicknagl, A few remarks on variational models for denoising, Commun. Math. Sci. 12 (2014), no. 5, 843-857.
  • [26] R. Choksi, Y. van Gennip and A. Oberman, Anisotropic total variation regularized L1 approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging 5 (2011), no. 3, 591-617.
  • [27] G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, A higher order model for image restoration: The one-dimensional case, SIAM J. Math. Anal. 40 (2009), no. 6, 2351-2391.
  • [28] J. Darbon and M. Sigelle, A fast and exact algorithm for total variation minimization, in: Pattern Recognition and Image Analysis, Springer, Berlin (2005), 351-359.
  • [29] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math. 56 (1996), no. 4, 1181-1198.
  • [30] M. Droske and A. Bertozzi, Higher-order feature-preserving geometric regularization, SIAM J. Imaging Sci. 3 (2010), no. 1, 21-51.
  • [31] V. Duval, J.-F. Aujol and Y. Gousseau, The TVL1 model: A geometric point of view, Multiscale Model. Simul. 8 (2009), no. 1, 154-189.
  • [32] S. Esedo¯glu and S. J. Osher, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Comm. Pure Appl. Math. 57 (2004), no. 12, 1609-1626.
  • [33] A. Flinth and P. Weiss, Exact solutions of infinite dimensional total-variation regularized problems, Inf. Inference 8 (2019), no. 3, 407-443.
  • [34] I. Fonseca, G. Leoni, F. Maggi and M. Morini, Exact reconstruction of damaged color images using a total variation model, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 5, 1291-1331.
  • [35] Y. Gousseau and J.-M. Morel, Are natural images of bounded variation?, SIAM J. Math. Anal. 33 (2001), no. 3, 634-648.
  • [36] A. Haddad and Y. Meyer, An improvement of Rudin-Osher-Fatemi model, Appl. Comput. Harmon. Anal. 22 (2007), no. 3, 319-334.
  • [37] M. Hintermüller, K. Papafitsoros and C. N. Rautenberg, Analytical aspects of spatially adapted total variation regularisation, J. Math. Anal. Appl. 454 (2017), no. 2, 891-935.
  • [38] M. Hintermüller, C. N. Rautenberg and J. Hahn, Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction, Inverse Problems 30 (2014), no. 5, Paper No. 055014.
  • [39] J. Lellmann, K. Papafitsoros, C. Schönlieb and D. Spector, Analysis and application of a nonlocal Hessian, SIAM J. Imaging Sci. 8 (2015), no. 4, 2161-2202.
  • [40] G. Leoni, A First Course in Sobolev Spaces, Grad. Stud. Math. 105, American Mathematical Society, Providence, 2009.
  • [41] Y. Lou, T. Zeng, S. Osher and J. Xin, A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci. 8 (2015), no. 3, 1798-1823.
  • [42] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Univ. Lecture Ser. 22, American Mathematical Society, Providence, 2001.
  • [43] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM J. Numer. Anal. 40 (2002), no. 3, 965-994.
  • [44] S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the H−1 norm, Multiscale Model. Simul. 1 (2003), no. 3, 349-370.
  • [45] K. Papafitsoros and K. Bredies, A study of the one dimensional total generalised variation regularisation problem, Inverse Probl. Imaging 9 (2015), no. 2, 511-550.
  • [46] K. Papafitsoros and C. B. Schönlieb, A combined first and second order variational approach for image reconstruction, J. Math. Imaging Vision 48 (2014), no. 2, 308-338.
  • [47] K. Papafitsoros and T. Valkonen, Asymptotic behaviour of total generalised variation, in: Scale Space and Variational Methods in Computer Vision, Lecture Notes in Comput. Sci. 9087, Springer, Cham (2015), 720-714.
  • [48] C. Pöschl, Tikhonov Regularization with General Residual Term, PhD thesis, University of Innsbruck, Innsbruck, 2008.
  • [49] C. Pöschl and O. Scherzer, Characterization of minimizers of convex regularization functionals, in: Frames and Operator Theory in Analysis and Signal Processing, Contemp. Math. 451, American Mathematical Society, Providence (2008), 219-248.
  • [50] C. Pöschl and O. Scherzer, Exact solutions of one-dimensional total generalized variation, Commun. Math. Sci. 13 (2015), no. 1, 171-202.
  • [51] W. Ring, Structural properties of solutions to total variation regularization problems, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 799-810.
  • [52] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), no. 1-4, 259-268.
  • [53] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Appl. Math. Sci. 167, Springer, New York, 2009.
  • [54] D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems 19 (2003), no. 6, S165-S187.
  • [55] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, 1977.
  • [56] T. Valkonen, The jump set under geometric regularization. Part 1: Basic technique and first-order denoising, SIAM J. Math. Anal. 47 (2015), no. 4, 2587-2629.
  • [57] L. Vese, A study in the BV space of a denoising-deblurring variational problem, Appl. Math. Optim. 44 (2001), no. 2, 131-161.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd4f19c9-86e3-4a96-a41a-b5337325819d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.