PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of emitter sources in the aspect of their fractal features

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the procedure of identification radar emitter sources with the trace distinctive features of original signal with the use of fractal features. It is a specific kind of identification called Specific Emitter Identification, where as a result of using transformations, which change measure points, a transformation attractor was received. The use of linear regression and the Lagrange polynomial interpolation resulted in the estimation of the measurement function. The method analysing properties of the measurement function which has been suggested by the authors caused the extraction of two additional distinctive features. These features extended the vector of basic radar signals’ parameters. The extended vector of radar signals’ features made it possible to identify the copy of radar emitter source.
Rocznik
Strony
623--628
Opis fizyczny
Bibliogr. 23 poz., wykr., rys.
Twórcy
autor
  • WB Electronics S.A., 129/133 Poznańska St., 05-850 Ożarow Mazowiecki, Poland
autor
  • Institute of Radioelectronics, Faculty of Electronics, Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] B.B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Comp., New York, 1982.
  • [2] G. Cantor, “Uber unen dliche, lineare Punktmannigfaltigkeiten”, V Math. Ann. 21, 545-591 (1883).
  • [3] H. von Koch, “Sur une courbe continue sans tangente, obtenue par une construction geometrique elementaire”, Arc. Mat. 1, 681-404 (1904).
  • [4] W. Sierpiński, “Sur une courbe cantorienne don’t tout point est un point de ramification”, C.R. Acad., Paris 160, 302 (1915).
  • [5] G. Peano, “Sur une courbe qui remplittoute une aire plane”, Math. Ann. 36, 157-160 (1890).
  • [6] D. Hilbert, “Uber die stetige Abbildung einer Linie auf Flachenstruck”, Math. Ann. 38, 459-460 (1891).
  • [7] R. Engelking, Dimension Theory, Scientific Press PWN, Warsaw, 1977.
  • [8] F. Hausdorff, “Dimension und auseres”, Mas. Math. Ann. 79, 157-179 (1918).
  • [9] K. Menger, Dimensionstheorie, Teubner, Leipzig, 1928.
  • [10] P. Mattila, B. Bollobas, and W. Fulton, Geometry of Sets andMeasures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Univ. Press, Cambridge, 1999.
  • [11] J. Dudczyk, A. Kawalec, and R. Owczarek, “An application of iterated function system attractor for specific radar source identification”, Proc. Int. Conf. on Microwaves, Radar and WirelessCommunications MIKON 1, 256-259 (2008).
  • [12] A. Kawalec, R. Owczarek, and J. Dudczyk, “Data modelling and simulation applied to radar signal recognition”, Molecularand Quantum Acoustics 26, 165-173 (2005).
  • [13] F. Berizzi, G. Bertini and M. Martorella, “Two-dimensional variation algorithm for fractal analysis of sea SAR images”, IEEE Trans. Geosci. Remote Sens. 44, 2361-2373 (2006).
  • [14] M. German, G.B. Be’nie’, and J.M. Boucher, “Contribution of the fractal dimension to multiscale adaptive filtering of SAR imagery”, IEEE Trans. Geosci. Remote Sens. 41, 1765-1772 (2003).
  • [15] B. Świdzińska, “Fractal compression using random encoding algorithm”, Bull. Pol. Ac.: Tech. 46 (4), 525-532 (1998).
  • [16] A. Wojtkiewicz, M. Nałęcz, K. Kulpa, and R. Rytel-Andrianik, “A novel approach to signal processing in FMCW radar”, Bull. Pol. Ac.: Tech. 50 (4), 347-359 (2002).
  • [17] M.W. Liu and J.F. Doherty, “Specific emitter identification using nonlinear device estimation”, Proc. Sarnoff SymposiumIEEE 1, 1-5 (2008).
  • [18] K.I. Talbot, P.R. Duley, and M.H. Hyatt, “Specific emitter identification and verification”, Technology Review J. 113-133 (2003).
  • [19] J. Dudczyk, “Applying the radiated emission to the radioelectronic devices identification”, Dissertation Thesis, Dept. Elect., Military Univ. of Tech., Warsaw, 2004, (in Polish).
  • [20] Z. Hellwig, Theory of Probability and Mathematical Statistics, Scientific Press PWN, Warsaw, 1998.
  • [21] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley & Sons, New York, 2000.
  • [22] K. Fukunaga, Introduction to Statistical Pattern Recogniction, Second Edition, Academic Press, New York, 1990.
  • [23] C.T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters”, IEEE Trans. on Computers 1, 68-86 (1971).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd4beb6f-51f5-499a-9b10-d4dd5a0debdf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.