Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grouting is a widely used method of reinforcement for stabilising fractured surrounding rock. To investigate the triaxial compression behaviour of surrounding rock after grouting reinforcement, laboratory-prepared grouted specimens were subjected to triaxial compression tests using an RMT-150B testing system. The analysis focused on the effects of confining stress, particle size, and water-to-cement ratio on the stress-strain behaviour. The internal friction angle and cohesion were determined based on the Mohr-Coulomb criterion. The variations in strain at peak stress and the elastic modulus were clarified, and the failure modes of the grouted specimens were examined. Additionally, Kendall’s correlation analysis was employed to evaluate the relationship between confining stress and other parameters. The results indicate that increasing confining stress significantly enhances the load-bearing capacity of the surrounding rock. The optimal rock particle gradation was observed when the particle size ranged between 5-10 mm, yielding the highest compressive capacity. Conversely, increasing the water-to-cement ratio reduced the strength of the specimens. Among the analysed factors, confining stress exhibited the strongest correlation with peak stress.
Wydawca
Czasopismo
Rocznik
Tom
Strony
273--291
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- Joint National-Local Engineering Research Center for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan 232001, China
autor
- Anhui University of Science and Technology, China
Bibliografia
- [1] J. Niu, Z. Li, W. Gu, et al., Experimental study of split grouting reinforcement mechanism infilling medium and effect evaluation. Sensors 20 (11), 3008 (2020). DOI: https://doi.org/10.3390/s20113088.
- [2] J.C. Jaeger, N.G.W. Cook, Fundamentals of rock mechanics 3rd, 1979 Chapman and Hall, London. DOI: https://doi.org/10.1017/S001675680003274X.
- [3] T. Ramamurthy, V.K. Aron, Strength predictions for jointed rocks in confined and unconfined states. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 31 (1), 9-22 (1994).DOI: https://doi.org/10.1016/0148-9062(94)92311-6.
- [4] M. Singh, B. Singh, High lateral strain ratio in jointed rock masses. Engineering Geology 98 (3), 75-85 (2007).DOI: https://doi.org/10.1016/j.enggeo.2007.11.004.
- [5] J.X. Tang, L.R. Kong, Y.L. Wang, et al., Experiment on effects of fissure dip angle and length on mechanical properties and failure modes of low-strength rock mass. Industrial Construction 49 (2), 85-92 (2019).DOI: https://doi.org/10.1016/j.engfracmech.2018.04.044.
- [6] Y. Zhou, Z. Sun, L. Wang, et al., Meso research on mechanical properties and slab failure mechanism of pre-fractured rock mass under the condition of one side restriction loading. Rock and Soil Mechanics 39 (12), 4385-4394 (2018).DOI: https://doi.org/10.16285/j.rsm.2017.2597.
- [7] Y.L. Wang, J.X. Tang, Z.Y. Dai, et al., Effect of fracture number and aperture on mechanical properties and failure modes of low-strength rock mass. Journal of China Coal Society 43 (12), 3338-3347 (2018).DOI: https://doi.org/10.13225/j.cnki.jccs.2018.0365.
- [8] S.Q. Yang, Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Engineering Fracture Mechanics 78 (17), 3059-3081 (2011).DOI: https://doi.org/10.1016/j.engfracmech.2011.09.002.
- [9] S.Q. Yang, X.G Liu, H.W. Jing, Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences 63, 82-92 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2013.06.008.
- [10] S.Q. Yang, Study of strength failure and crack coalescence be havior of sandstone containing three pre-existingfissures. Rock and Soil Mechanics 34 (1), 31-39 (2013).DOI: http://ytlx.whrsm.ac.cn/en/y2013/v34/I1/31.
- [11] K. Hou, S. Wang, S. Yao, et al., Research progress on modification of polyurethane grouting materials in mines. Coal Science and Technology (Peking) 50, 28-34 (2022).DOI: https://doi.org/10.13199/j.cnki.cst.2021-0501.
- [12] C. Zhang, W. Pan, J. Wang, et al., Research Progress of the Cell Structure Characteristics and Compressive Properties of Polyurethane Foam Grouting Rehabilitation Materials. Cailiao Daobao/Materials Reports 38, 3 (2024).DOI: https://doi.org/10.11896/cldb.22070007.
- [13] X.M. Guan, H.B. Zhang, Z.P. Yang, et al., Research of high performance in organic-organic composite grouting materials. Journal of China Coal Society 45 (3), 902-910 (2020).DOI: https://doi.org/1013225/j.cnki.jccs.SJ20.0117.
- [14] J.J. Zeng, H.Z. Li, D.D. Wei, et al., Preparation and properties of acrylate grouting material used in coal mine. Coal Geology and Exploration 51 (6), 22-29 (2023).DOI: https://doi.org/10.12363/issn.1001-1986.22.10.0770.
- [15] S. Liu, G. Xie, S. Wang, Effect of curing temperature on hydration properties of waste glass powder in cement based materials. Journal of Thermal Analysis and Calorimetry 119 (1), 47-55 (2015).DOI: https://doi.org/10.1007/s10973-014-4095-6.
- [16] N .H. Mohammed, R. Pusch, N. Alansari, et al., Proportioning of cement-based grout for sealing fractured rock-use of packing models. Engineering 5 (10), 765-774 (2013). DOI: https://doi.org/10.4236/eng.2013.510092.
- [17] M. Mollamahmutoğlu, E. Avci, Ultrafine portland cement grouting performance with or without additives. KSCE Journal of Civil Engineering 19 (7), 2041-2050 (2015).DOI: https://doi.org/10.1007/s12205-014-1445-7.
- [18] E. Avci, M. Mollamahmutoğlu, Ucs properties of superfine cement–grouted sand. Journal of Materials in Civil Engineering 28 (12), 06016015 (2016). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001659.
- [19] E. Avci, M. Mollamahmutoğlu, Permeability characteristics of superfine cement-grouted sand. Aci Materials Journal 114 (1), 21-28 (2017). DOI: https://doi.org/10.14359/51689471.
- [20] W.T. Liu, H.F. Wu, J.J. Shen, Based on Box-Behnken method superfine cement grouting material ratio and performance optimization model. Coal Science and Technology (Peking) 52 (8), 146-158 (2024).DOI: https://doi.org/10.12438/cst.2023-1391.
- [21] Q.S. Liu, G.F. Lei, C.B. Lu, et al., Experimental study of grouting reinforcement influence on mechanical properties of rock fracture. Chinese Journal of Rock Mechanics and Engineering 36 (Supp. 1), 3140-3147 (2017).DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0459.
- [22] Q.S. Liu, Y.S. Zhou, C.B. Lu, et al., Experimental study on mechanical properties of mudstone fracture before and after grouting. Journal of Mining and Safety Engineering 33 (3), 509-514 (2016).DOI: https://doi.org/10.13545/j.cnki.jmse.2016.03.020.
- [23] Y.L. Lu, M.Q. He, W.S. Li, et al., Micromechanical mechanisms of grouting reinforcement in rock joints and microstructure optimization of grout-rock bonding planes. Chinese Journal of Rock Mechanics and Engineering 39 (9), 1808-1818 (2020). DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0302.
- [24] J.X. Zhang, Y.N. Sun, Experimental and Mechanism Study of a Polymer Foaming Grouting Material for Reinforcing Broken Coal Mass. Material for Reinforcing Broken Coal Mass 23 (1), 346-355 (2018).DOI: https://doi.org/10.1007/s12205-018-0780-5.
- [25] R. Pan, Q. Wang, B. Jiang, et al., Failure of bolt support and experimental study on the parameters of bolt-grouting for supporting the roadways in deep coal seam. Engineering Failure Analysis 80, 218-233 (2017).DOI: https://doi.org/10.1016/j.engfailanal.2017.06.025.
- [26] R. Pan, Study on bolt grouting mechanism and control technology of broken surrounding rock in deep roadway. Chinese Journal of Rock Mechanics and Engineering 40, 864 (2021).DOI: https://doi.org/10.13722/j.cnki.jrme.2020.1039.
- [27] R. Pan, L. Wang, H.X. Huang, et al., Experimental study on anchorage performance and parameters of groutinganchor cable under broken surrounding rock. Journal of Mining and Safety Engineering 39, 1108-1115 (2022).DOI: https://doi.org/10.13545/j.cnki.jmse.2021.0554.
- [28] R. Pan, L. Wang, Experimental study on the bearing behavior of bolted and grouted broken surrounding rock of deep roadways in a coal mine. KSCE Journal of Civil Engineering 28, 4032-4040 (2024).DOI: https://doi.org/10.1007/s12205-024-0018-7.
- [29] H.J. Dong, J.S. Zhang, H.Y. Yao, et al., Mechanical properties and instability mechanism of large-scale grouting specimens with different parameters. Journal of China University of Mining and Technology 50 (1), 79-89 (2021).DOI: https://doi.org/10.13247/j.cnki.jcumt.001233.
- [30] Q. Wang, L. Wang, B.H. Liu, et al., Study on the void characteristics and mechanical properties of the grouting body of the crushed surrounding rock. Journal of China University of Mining and Technology 48, 1197-1205(2019). DOI: https://doi.org/10.13247/j.cnki.jcumt.001074.
- [31] G .R. Feng, J.K. Ma, Z. Li, et al., Bearing characteristics and damage mechanism of grouting reinforced body forbroken surrounding rock. Journal of the China Coal Society 48, 411-423 (2023).DOI: https://doi.org/10.13225/j.cnki.jccs.2022.1265.
- [32] X.K. Wu, G.M. Zhao, X.R. Meng, et al., Load-bearing characteristics and energy evolution of fractured rock masses after granite and sandstone grouting. Journal of Central South University 31, 2810-2825 (2024).DOI: https://doi.org/10.1007/s11771-024-5760-y.
- [33] P. Wang, Y.J. Zhu, W.J. Yu, et al., Test analysis of partial compaction mechanical characteristics of weak brokensurrounding rock. Rock and Soil Mechanics 40 (7), 2703-2712 (2019).DOI: https://doi.org/10.16285/j.rsm.2018.0460.
- [34] X. Tan, Y.G. Hu, X. Yin, et al., Macro-micro scale tensile strength correlations for particle-dem based rock models. Chinese Journal of Theoretical and Applied Mechanics 56, 1411-1425 (2024).DOI: https://doi.org/10.6052/0459-1879-23-487.
- [35] A. Kılıc, E. Yasar, A.G. Celik, Effect of grout properties on the pull-out load capacity of fully grouted rock bolt. Tunnelling and Underground Space Technology 17, 355-362 (2002).DOI: https://doi.org/10.1016/s0886-7798(02)00038-x.
- [36] Mahdi Moosavi, William F. Bawden, Shear strength of Portland cement grout. Cement & Concrete Composites 25, 729-735 (2003). DOI: https://doi.org/10.1016/S0958-9465(02)00101-4.
- [37] M. Axelsson, G. Gustafson, A. Fransson, Stop mechanism for cementitious grouts at different water cement ratios, Tunnelling and Underground Space Technology 24, 390-397 (2009).DOI: https://doi.org/10.1016/j.tust.2008.11.001.
- [38] J.C. Jaeger, N.G.W. Cook, Robert Zimmerman, Fundamentals of rock mechanics 4th, 2007 Wiley-Blackwell, New York. DOI: https://doi.org/10.1017/CBO9780511735349.
- [39] M.Q. You, Three independent parameters to describe conventional triaxial compression strength of intact rocks. Journal of Rock Mechanics and Geotechnical Engineering 2 (4), 350-356 (2010).DOI: https://doi.org/10.3724/SP.J.1235.2010.00350.
- [40] M.Q. You, Comparison of the accuracy of some conventional triaxial strength criteria for intact rock. International Journal of Rock Mechanics and Mining Sciences 48 (5), 852-863 (2011).DOI: https://doi.org/10.1016/ijrmms.2011.05.006.
- [41] M.Q. You, Effect of confining stress on Elastic modulus and relationship between fracture friction. Geotechnical Mechanics 24 (2), 167-170 (2003).
- [42] M.H. Li, G.Z. Yin, J. Xu, et al., A novel true-triaxial apparatus to study the geomechanical and fluid Flow aspects of energy exploitations in geological formations. Rock Mechanics and Rock Engineering 49, 4647-4659 (2016).DOI: https://doi.org/10.1007/s00603-106-1060-7/.
- [43] G .Z. Yin, M.H. Li, J. Xu, et al., A new multi-functional true triaxial fluid-solid coupling experiment system and its applications. Chinese Journal of Rock Mechanics and Engineering 34 (12), 2436-2445 (2015).DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0050.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd4bb769-d094-4daa-8757-d24d8a2dc95e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.