Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Paper presents the results of the simulation of acoustic wave propagation in quasi one-dimensional multi-layered structure. The purpose was to examine the influence of the thickness of two materials forming the transmission system, depending on the acoustic wave source frequency. Design/methodology/approach: To perform simulation, the FDTD (finite difference time domain) algorithm was used. An acoustic wave propagated through the system consisting of ten alternating layers of equal thickness, surrounded on both sides by air. On the edges of the simulation space Neumann boundary conditions were provided. Findings: Changing the layer thickness affects the position of the SPL minima and causes narrowing of the area of the total acoustic pressure curves. Research limitations/implications: The influence of changes in the thickness of the layers forming the quasi one-dimensional multilayer system on transmission was investigated. In order to better know the transmission characteristics of the system consisting of two different materials, the effect of changing the physical size of heterogeneous layers should be examined. It would be also important to compare the simulation results with those obtained experimentally. Practical implications: Simulation of quasi one-dimensional multi-layer systems allows to design new materials adapted to the requirements of specific applications without the need to carry experiment. Multilayer systems can be operated in a variety of applications, primarily as a filter with adjustable band gap frequency intermittently, and also as a material for absorbing incident acoustic waves. Originality/value: The available literature contains a limited information on the propagation of acoustic waves in quasi one-dimensional multi-layer systems. This paper responds to the demand caused by the lack of available articles in this topic and enables view the findings of research for one of the simpler periodic structures.
Wydawca
Rocznik
Tom
Strony
250--256
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
- Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19 42-200 Częstochowa, Poland
autor
- Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19 42-200 Częstochowa, Poland
autor
- Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19 42-200 Częstochowa, Poland
autor
- Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19 42-200 Częstochowa, Poland
autor
- Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19 42-200 Częstochowa, Poland
autor
- Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Department of Production Managment and Logistics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
- [1] J. Garus, S. Garus, K. Gruszka, R. Hrabański, Studies of transmission abilities of permutations of three-layer structures in visible light, New Technologies and Achievements in Metallurgy and Materials Engineering, A Collective Monograph (2012) 764-767.
- [2] S. Garus, J. Garus, K. Gruszka, Emulation of electromagnetic wave propagation in superlattices using FDTD algorithm, New Technologies and Achievements in Metallurgy and Materials Engineering, A Collective Monograph (2012) 768-771.
- [3] Z. Zhan, P. Wei, Influences of anisotropy on band gaps of 2D phononic crystal, Acta Mechanica Solida Sinica 23/2 (2010) 181-188.
- [4] Hong Wei Yang, Ze Kun Yang, Jian Xiao Liu, Ai Ping Li, Xiong You, A novel DGS microstrip antenna simulated by FDTD, Optik 124/16 (2013) 2277-2260.
- [5] Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Two-dimensional phononic crystals, Examples and application, Surface Science Reports, 65/8 (2010) 229-291.
- [6] K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation 14/3 (1966) 302-307.
- [7] J. Lovetri, D. Mardare, G. Soulodre, Modeling of the seat dip effect using the finite-difference time-domain method Journal of the Acoustical Society of America 100 (1996) 2204-2212.
- [8] A. Chaigne, A. Askenfelt, Numerical simulations of piano strings-Part I: a physical model for a struck string using finite difference methods, Journal of the Acoustical Society of America 95/2 (1994) 1112-1118.
- [9] V. Ostashev, D. Wilson, L. Liu, D. Aldridge, N. Symons, D. Marlin, Equations for finite-difference time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation Journal of the Acoustical Society of America 117 (2005) 503-517.
- [10] D.M. Sullivan, Electromagnetic simulation using the FDTD method, IEEE Press, 2000.
- [11] J.G. Maloney, K.E. Cummings, Adaptation of FDTD techniques to acoustic modeling, 11th Annual Review of Progress in Applied Computational Electromagnetics 2 (1995) 724-731.
- [12] C. Spa, A. Garriga, J. Escolano, Impedance boundary conditions for pseudo-spectral time-domain methods in room acoustics, Applied Acoustics 71/5 (2010) 402-410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd460e11-cbc6-4de3-92b2-42360805e770