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Abstract: This paper provides an analysis of the time opti-
mal control problem for a material point moving along a straight
line in the presence of strength of resistance to movement (friction)
and subject to constraint on the velocity. The point is controlled
by a limited traction or braking force. The analysis of the prob-
lem is based on the maximum principle for state constraints in the
Dubovitskii-Milyutin form, see Dubovitskii and Milyutin (1965), and
the necessary second-order optimality condition for bang-bang con-
trols, see Milyutin and Osmolovskii (1998).
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1. Introduction

The aim of this article is to attract the attention of transportation and mechan-
ical engineers to such an effective research tool as the Pontryagin maximum
principle (MP), see Pontryagin et al. (1964). The MP allows for studying an
optimal motion of objects controlled by a limited force. Time optimal con-
trol problems for a material point were considered in our previous publications,
see Osmolovskii, Figura, Kośka (2013), or Osmolovskii, Wójtowicz, Janiszewski
(2013), or Osmolovskii, Figura, Kośka, Wójtowicz (2015). Here we study such
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a problem, taking into account the resistance force and the limitation on the
velocity.

More precisely, we investigate the following optimization problem. A train (a
tram, a trolley, a bus, etc.), considered as a material point of the mass equal to
one (in conventional units), moves along a given segment of a horizontal straight
line under the influence of limited force of traction or braking and in the presence
of the force of resistance to the motion, depending on the velocity. The initial
position and the initial velocity, the terminal position and the terminal velocity
are given. The goal is to minimize the time of motion.

We exploit first and second order necessary optimality conditions to evaluate
candidates for the optimal solution of this problem. It is very well known that
“a solution derived by necessary conditions only is simply no valid solution at
all...”, see Young (1969), pp. 22-23 (Perron paradox). The necessary conditions
may provide the solution of the optimal control problem only in the case where
the solution exists.

By the Filippov theorem, see Filippov (1962), the solution to this problem ex-
ists. Taking into account this fact, we find extremals satisfying the Dubovitskii-
Milyutin maximum principle for problems with state constraints, see Dubovitskii
and Milyutin (1965), and then we choose among these extremals the optimal
solution using second-order necessary optimality conditions obtained by the first
author, see Milyutin and Osmolovskii (1998).

The paper is organized as follows. In Section 2 we give a strict formulation
of the problem, together with the necessary assumptions, and provide some
explanations and references concerning the existence of a solution. Section 3
contains the formulation of the maximum principle for problems with state
constraints in the Dubovitskii–Milyutin form. We recall a general formulation
of the MP, and then we write out a full set of conditions of the MP for the case
under consideration. Section 4 is dedicated to the direct and detailed analysis
of the MP in our problem, as a result of which we obtain five possible cases
A)-E) for extremals dependent on the initial and final conditions. In all these
cases the control turned out to be piecewise constant. In Section 5 we show
that the extremal, obtained in the case E) (in which the state constraint is not
active and the control is bang-bang), does not satisfy second-order necessary
optimality conditions, see Milyutin and Osmolovskii (1998). Therefore, the
possible structure of the optimal solution is exhausted only by cases A)-D). This
is the main result of the paper. The numerical example of Section 6 illustrates
this result. In Section 7 we mention some general theoretical results related to
our problem; their use allows to come a little faster to the results, obtained in
Section 4 by the direct analysis of the MP. In Section 8 we show that, due to a
simple structure of the problem, another approach is possible, which is not based
on application of necessary optimally conditions. However, small complication
of the problem eliminates this possibility, while considerations similar to those
that were presented in Sections 4 remains in effect. Section 9 summarizes the
results of the study.
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2. Optimal control problem

According to Newton’s second law, the dynamics of the point satisfies the system
of equations

ẋ(t) = y(t) a.e. in [0, T ], (1)

ẏ(t) = −w(y(t)) + u(t) a.e. in [0, T ], (2)

u(t) ∈ [a, b] a.e. in [0, T ], (3)

where x(t) is the position, y(t) is the velocity of the point at time t, w(y) is the
force of resistance to the motion (friction) , depending on the velocity y, a < 0
and b > 0 are given constants.

Assumption 2.1 The function w(·) : IR → IR is odd, continuous, twice contin-
uously differentiable on the half-line (0,∞), and satisfies the conditions

w′(y) > 0 and w′′(y) ≥ 0 for all y > 0.

Note that Assumption 2.1 implies: w(0) = 0 and w(y) > 0 for all y > 0.
As was said, the initial position, the initial velocity, the terminal position,

and the terminal velocity are fixed, that is

x(0) = x0, y(0) = y0, x(T ) = xT , y(T ) = yT , (4)

where x0, xT , y0, yT are prescribed values, x0 < xT .
There is a state constraint of the form

y(t) ≤ V for all t ∈ [0, T ], (5)

where V > 0 is the maximal speed possible. To avoid the trivial maximum
principle, we make the following assumption.

Assumption 2.2 0 ≤ y0 < V and 0 ≤ yT < V.

We will also need the following important assumption.

Assumption 2.3 w(V ) < b.

This implies that if 0 ≤ y ≤ V , then 0 ≤ w(y) ≤ w(V ), and hence −w(y) + b ≥
−w(V )+b > 0, while−w(y)+a < 0. Consequently, the case of u = b corresponds
to acceleration, and the case of u = a corresponds to deceleration.

Our goal now is to minimize the time duration of motion:

T → min . (6)

For brevity, the problem (1)-(6) is called Problem A. Obviously, an optimal
process (x(·), y(·), u(·), T ) satisfies

Assumption 2.4 y(t) ≥ 0 for all t ∈ [0, T ], and there is no interval [t1, t2] ⊂
[0, T ] of positive measure such that y(t) = 0 for all t ∈ [t1, t2].
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Otherwise, the time T can be reduced. We consider only processes satisfying
this assumption.

Since, in this problem, the set of admissible trajectories is obviously
nonempty, both state variables are bounded, the system is linear in the con-
trol, and the control values lie in a convex compact set, then, by the theorem
of Filippov, see Filippov (1962) or Cesari (1983) or Lee and Markus (1986), the
optimal trajectory exists. We note that formally, in Filippov’s theorem, there
is no state constraint. However, this link to Filippov’s theorem is appropriate,
since the presence of state constraint in the problem leads only to small changes
in the proof and formulation of this theorem. Within the framework of this arti-
cle we would like to confine ourselves to just such a remark about the existence
of solution.

3. The Dubovitskii-Milyutin maximum principle

3.1. Maximum principle for a general problem of type A

For the convenience of the reader, we first formulate the maximum principle, ob-
tained by Dubovitskii and Milyutin for a class of problems, containing Problem
A, see Dubovitskii and Milyutin (1965) or Milyutin, Dmitruk, and Osmolovskii
(2004). Consider the following optimal control problem:

T → min (7)

subject to

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, for a.a. t ∈ [0, T ], (8)

x(0) = x0, x(T ) = xT , (9)

ϕ(x(t)) ≤ 0, for all t ∈ [0, T ]. (10)

Here the state variable x(·) : [0, T ] → IRn is a Lipschitz continuous function,
the control variable u(·) : [0, T ] → IRm is a measurable and essentially bounded
function, the mapping f : IRn+m 7→ IRn is assumed to be continuous together
with its partial derivative fx, the mapping ϕ : IRn 7→ IR is continuously differ-
entiable, x0, xT ∈ IRn are given vectors, and U ⊂ IRm is an arbitrary set.

A pair of functions (x(·), u(·)), together with their domain of definition [0, T ],
is called the process of the problem. A process (x(·), u(·), T ) is called admissible
if it satisfies all constraints of the problem. An admissible process (x̂(·), û(·), T̂ )
is called a strong local minimum if there is an ε > 0 such that T ≥ T̂ for
all admissible processes satisfying |T − T̂ | < ε and |x(t) − x̂(t)| < ε for all
t ∈ [0, T ] ∩ [0, T̂ ].

In order to formulate the necessary conditions for a strong local mini-
mum for a process (x̂(·), û(·), T̂ ), we introduce the Pontryagin function (or pre-
Hamiltonian)

H(x, u, p) := p f(x, u), (11)
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where p is a row vector of the dimension n. The function

H(x, p) := sup
u∈U

H(x, u, p) (12)

is called the Hamiltonian.
We say that an admissible process (x̂(·), û(·), T̂ ) satisfies conditions of the

maximum principle if there are functions of bounded variation p(·) : [0, T ] → IRn

and µ(·) : [0, T ] → IR, defining the measures dp and dµ, respectively, such that

dµ ≥ 0, ϕ(x̂(·)) dµ = 0, (13)

‖p‖∞ +

∫

[0,T ]

dµ > 0, (14)

−dp = Hx(x̂(·), û(·), p(·)) dt− ϕ ′(x(·)) dµ, (15)

max
u∈U

H(x̂(t), u, p(t)) = H(x̂(t), û(t), p(t)) for a.a. t ∈ [0, T ], (16)

H(x̂(t), û(t), p(t)) = const =: α0 ≥ 0 for a.a. t ∈ [0, T ]. (17)

Here, conditions (13) are called the nonnegativeness of the measure and com-
plementarity condition, respectively, inequality (14) is called the nontriviality
condition , (15) is the adjoint equation , (16) is the maximum condition for the
Pontryagin function, and (17) is the condition of the constancy and nonnega-
tiveness of the Hamiltonian .

Let us emphasize that here and in the sequel we denote by dp and dµ the
Lebesgue-Stieltjes measures, generated by the functions of bounded variation
p(·) and µ(·), respectively. (It is convenient and will allow for avoiding new
notation.) Recall that, on the real line, each such measure is necessarily a
regular Borel measure (and vice versa). The adjoint equation (15) is understood
as the equality between measures.

Theorem 3.1 If a process (x̂(·), û(·), T̂ ) is a strong local minimum in problem
(7)-(10), then it satisfies conditions of the maximum principle.

3.2. Maximum principle for Problem A

Observe, that for Problem A we have:

m = 1, n = 2, U = [a, b],

f1(x, y) = y, f2(x, y) = −w(y) + u, ϕ(x, y) = y − V,

and obviously, all assumptions of problem (7)-(10) are fulfilled. According to
(11), the Pontryagin function for Problem A has the form:

H = p1y + p2(−w(y) + u). (18)
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Let a process (x(·), y(·), u(·), T ) be admissible in Problem A, and y(t) ≥ 0 for
all t ∈ [0, T ]. The maximum principle for this process consists in the following:
there exist functions of bounded variation p1(·) : [0, T ] → IR, p2(·) : [0, T ] → IR,
and µ(·) : [0, T ] → IR such that

dµ ≥ 0, (y(·)− V ) dµ = 0, (19)

‖p1‖∞ + ‖p2‖∞ +

∫

[0,T ]

dµ > 0, (20)

−dp1 = 0, − dp2 = (p1(·)− p2(·)w
′(y(·))) dt− dµ, (21)

max
u∈[a,b]

p2(t)u = p2(t)u(t) a.e. in [0, T ], (22)

p1(t)y(t)+ p2(t)(−w(y(t))+u(t)) = const =: α0 ≥ 0 a.e. in [0, T ].(23)

4. Analysis of the maximum principle

Let the triple of multipliers (p1(·), p2(·), dµ) satisfy conditions (19)-(23) of the
maximum principle. According to (21), dp1 = 0, consequently p1 = const. Set

β = −p1, p = p2.

Then, the second equation in (21) takes the form

dp = (p(·)w′(y(·)) + β) dt+ dµ, (24)

and from the maximum condition (22) it follows that

if p(t) < 0, then u(t) = a, (25)

if p(t) = 0, then u(t) ∈ [a, b], (26)

if p(t) > 0, then u(t) = b. (27)

As was said, the first case corresponds to deceleration , the third one is called
acceleration. the second one is said to be a singular regime .

First of all we show that the measure dµ has no atoms and hence the func-
tions of bounded variation µ(·) and p(·) are continuous. This is not surprising,
since the state constraint y − V ≤ 0 has the order 1, i.e., the control appears
after the first differentiation of y − V . This property of continuity of µ(·) and
p(·) will considerably simplify the handling of the MP in our considerations.

Lemma 4.1 If y(t′) = V, then

p(t′ − 0) = p(t′ + 0) = 0 and [µ](t′) := µ(t′ + 0)− µ(t′ − 0) = 0.
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Proof Let us show that p(t′ + 0) ≤ 0. Assume the contrary: p(t′ + 0) > 0.
Then, condition (27) implies: u(t) = b a.e. in some right half-neighborhood
(t′, t′ + ε) of the point t′ (ε > 0) and hence ẏ(t) = −w(y(t)) + b > 0 a.e. in
(t′, t′ + ε). It means that y(t) strictly increases in (t′, t′ + ε), that contradicts
the conditions y(t′) = V and y(t) ≤ V for all t ∈ [0, T ]. Similarly, we show that
p(t′ − 0) ≥ 0.

Consequently, [p](t′) := p(t′ + 0) − p(t′ − 0) ≤ 0. But from the adjoint
equation (24) and the condition dµ ≥ 0 it follows that [p](t′) = [µ](t′) ≥ 0.
Consequently, [p](t′) = [µ](t′) = 0, and then p(t′ + 0) = p(t′ − 0) = 0. The
lemma is proved. �

Set

M0(p) := {t ∈ [0, T ] : p(t) = 0}, MV (y) = {t ∈ [0, T ] : y(t) = V }.

Corollary 4.1 The function p(·) is continuous, and the measure dµ has no
atoms. Moreover,

MV (y) ⊂ M0(p). (28)

Denote by χM0(p) the characteristic function of the set M0(p). Then, inclusion
(28) and the complementarity condition (y(·)− V ) dµ = 0 imply

dµχM0(p) = dµ. (29)

Lemma 4.2 There are no points t1, t2 ∈ [0, T ] such that

t1 < t2, p(t1) = p(t2) = 0, p(t) > 0 ∀ t ∈ (t1, t2). (30)

Proof Assume the contrary: let t1, t2 ∈ [0, T ] satisfy (30). Then, by Corol-
lary 4.1, y(t) < V for all t ∈ (t1, t2) and hence, in view of (19) and (24),

ṗ(t) = p(t)w′(y(t)) + β a.e. in (t1, t2). (31)

Obviously, (30) implies

ṗ(t1 + 0) ≥ 0 and ṗ(t2 − 0) ≤ 0. (32)

But, by virtue of (30) and (31), ṗ(t1 + 0) = ṗ(t2 − 0) = β, whence β = 0.
Consequently,

ṗ(t) = p(t)w′(y(t)) a.e. in (t1, t2). (33)

This and the conditions

w′(y(t)) ≥ 0 and p(t) > 0 ∀ t ∈ (t1, t2)

imply
ṗ(t) ≥ 0 ∀ t ∈ (t1, t2).
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If ṗ(t) = 0 for all t ∈ (t1, t2), then w′(y(t)) = 0 for all t ∈ (t1, t2), and hence
y(t) = 0 for all t ∈ (t1, t2), which is impossible for the process (x(·), y(·), u(·), T )
by Assumption 2.3. Consequently ṗ(t) > 0 on a subset of a positive measure

of the interval (t1, t2), and then
∫ t1

t0
ṗ(t) dt > 0. The latter contradicts the

conditions p(t1) = p(t2) = 0. �

Quite similarly, the following lemma can be proved.

Lemma 4.3 There are no points t1, t2 ∈ [0, T ] such that

t1 < t2, p(t1) = p(t2) = 0, p(t) < 0 ∀ t ∈ (t1, t2). (34)

Corollary 4.2 There are no points t1, t2 ∈ [0, T ] such that

t1 < t2, p(t1) = p(t2) = 0, p(t) 6= 0 ∀ t ∈ (t1, t2). (35)

Lemma 4.4 The set M0(p) is either empty, or a singleton, or a closed interval
[t1, t2] ⊂ (0, T ) (t1 < t2) that coincides with the set MV (y).

Proof Suppose that M0(p) 6= ∅ and M0(p) is not a singleton. Let τ1, τ2 ∈
M0(p), τ1 < τ2. Let us show that then the whole segment [τ1, τ2] contains in
M0(p). Assume the contrary. Then, there is a point τ ∈ (τ1, τ2) such that
p(τ) 6= 0. In this case, there is an interval (τ ′, τ ′′) ⊂ (τ1, τ2), containing τ , such
that p(τ ′) = p(τ ′′) = 0, τ ′ < τ ′′, and p(t) 6= 0 for all t ∈ (τ ′, τ ′′). The latter is
impossible in view of Corollary 4.2. Consequently, M0(p) is a connected closed
set, i.e., a closed interval. Denote it by [t1, t2] (t1 < t2).

Let us show that β 6= 0. Assume the contrary: β = 0. Then the adjoint
equation (24) becomes

dp = p(·)w′(y(·)) dt+ dµ.

Multiplying this equation by the characteristic function χ[t1,t2] of the interval
[t1, t2] and taking into account the definition of this interval and relation (29),
we get dµ = 0. Hence the adjoint equation has the form

ṗ(·) = p(·)w′(y(·)).

Since p(t1) = 0, it follows that p(t) ≡ 0, and then the tuple (β, p(·), dµ) is
trivial. Consequently, β 6= 0.

Upon multiplying equation (24) by χ[t1,t2], we get

χ[t1,t2]β dt+ dµ = 0.

In turn, by multiplying this equation by (y(·)− V ) and taking into account the
complementarity condition (y(·)− V ) dµ = 0, we obtain

(y(·)− V )χ[t1,t2]β dt = 0,
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whence (y(·) − V )χ[t1,t2] = 0 (since β 6= 0). It means that y(t) = V for all
t ∈ [t1, t2]. Consequently, M0(p) ⊂ MV (y). According to (28), the inverse
inclusion also holds. Consequently, M0(p) = MV (y).

Finally, note that [t1, t2] ⊂ (0, T ), since y0 < V and y1 < V . The lemma is
proved. �

Lemma 4.5 Let t1 ∈ (0, T ) be such that p(t) < 0 for all t ∈ (0, t1), p(t1) = 0
and p(t) > 0 for all t ∈ (t1, T ). Then, dµ = 0, β > 0, y(t1) = 0, and MV (y) is
an empty set.

Proof Let t1 ∈ (0, T ) be such a point. According to (28), the set MV (y) is
empty or a singleton {t1}. Since the measure dµ is concentrated on MV (y) and
has no atoms, we get: dµ = 0, and therefore the adjoint equation (24) has the
form

ṗ = p(·)w′(y(·)) + β. (36)

If β = 0, then p(·) = 0, and hence the tuple (p, β, dµ) is trivial. Therefore β 6= 0.
Moreover, from equation (36) it follows that the function p(·) is continuously
differentiable, and ṗ(t1) = β, whereas from the conditions of the lemma it follows
that ṗ(t1) ≥ 0, and hence β > 0.

Further, condition (23) implies

−βy(t1) = α0 ≥ 0. (37)

Since y(t1) ≥ 0 and β > 0, it follows that y(t1) = 0. Consequently, MV (y) is an
empty set. The lemma is proved. �

Lemma 4.6 There are no points t1, t2 ∈ (0, T ), t1 < t2, such that p(t) < 0 for
all t ∈ (0, t1), p(t) = 0 for all t ∈ [t1, t2], and p(t) > 0 for all t ∈ (t1, T ).

Proof Let t1, t2 ∈ (0, T ) be such points. Then, according to (25),
ẏ(t) = −w(y(t)) + a < 0 a.e. on (0, t1), that is y(t) decreases on (0, t1), and by
Lemma 4.4, y(t) = V for all t ∈ [t1, t2]. The latter is impossible since y(t) ≤ V
on [0, T ]. The lemma is proved. �

Since p(·) is a continuous function, it follows from Lemmas 4.4-4.6 that there
are only five possible cases.

A) p(t) > 0 for all t ∈ (0, T ). In this case

u(t) = b a.e. in [0, T ].

This corresponds to acceleration on the whole segment [0, T ].

B) p(t) < 0 for all t ∈ (0, T ). In this case

u(t) = a a.e. in [0, T ].

This corresponds to deceleration on the whole segment [0, T ].
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C) There is a point t1 ∈ (0, T ) such that p(t) > 0 for all t ∈ (0, t1) and
p(t) < 0 for all t ∈ (t1, T ). In this case

u(t) = b a.e. in (0, t1) and u(t) = a a.e. in (t1, T ).

This corresponds to “acceleration – deceleration” mode with one switch-
ing at the point t1 ∈ (0, T ).

D) There are two points t1, t2 ∈ (0, T ), t1 < t2, such that p(t) > 0 for all
t ∈ (0, t1), p(t) = 0 for all t ∈ [t1, t2], and p(t) < 0 for all t ∈ (t1, T ). In
this case

u(t) = b a.e. in (0, t1)

u(t) = a a.e. in (t2, T ),

u(t) = w(V ) a.e. in (t1, t2), y(t) = V for all t ∈ [t1, t2].

This corresponds to “acceleration – singular – deceleration” mode with
two switchings at the points t1, t2 ∈ (0, T ). Moreover, the domain [t1, t2]
of the singular arc p(t) = 0 coincides with the domain of the boundary
arc y(t) = V .

E) There is a point t1 ∈ (0, T ) such that p(t) < 0 for all t ∈ (0, t1), p(t1) = 0,
and p(t) > 0 for all t ∈ (t1, T ). In this case

u(t) = a a.e. in (0, t1) and u(t) = b a.e. in (t1, T ).

Moreover, y(t1) = 0.
This corresponds to “deceleration – acceleration” mode with one switching
at the point t1 ∈ (0, T ).

The decomposition into cases A)-E) is obviously complete. In the next sec-
tion we show, using the second-order conditions, that in the case E) the quadru-
ple (x(·), y(·), u(·), T ) is not a strong local minimum in the problem.

5. Application of second-order necessary conditions in the

case E

5.1. General statement of second-order necessary conditions in the

minimum time problem for a system linear in the control

Here we formulate the result, presented in the book by Milyutin and Osmolovskii
(1998), Part 2, section 12.4. (A complete proof of this result can be found in the
book by Osmolovskii and Maurer, 2012.) Consider the following time-optimal
control problem

T → min, (38)

under the constraints:

ẋ(t) = a(x(t)) +B(x(t))u(t), a.e. in [0, T ], (39)
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x(0) = x0, x(T ) = xT , (40)

u(t) ∈ U, a.e. in [0, T ], (41)

where x ∈ IRn, u ∈ IRm, x0, xT ∈ IRn are given vectors, the mapping a(·) :
IRn → IRn is of class C2, B(·) = [bij(·)] is an n × m matrix with coefficients
bij(·) of class C2, U is a convex polyhedron. So, here the right hand side of the
control system has the form

f(x, u) = a(x) +B(x)u.

Set
H(x, u, p) = p(a(x) +B(x)u),

where p is an n-dimensional row-vector.
Let the triple (x(·), u(·), T ) be a strong local minimum in this problem.

Denote by M0 the set of all absolutely continuous functions p(·) : [0, T ] → IRn

satisfying the conditions of the maximum principle:

|p(0)| = 1, (42)

−ṗ(t) = Hx((x(t), u(t), p(t)) for a.a. t ∈ [0, T ], (43)

max
u∈U

H((x(t), u, p(t)) = H((x(t), u(t), p(t)) for a.a. t ∈ [0, T ], (44)

H((x(·), u(·), p(·)) = const =: α0 ≥ 0 for a.a. t ∈ [0, T ]. (45)

Obviously, these conditions follow from conditions (13)-(17) if in the latter we
put dµ = 0.

Assume that the function u(·) is piecewise constant, taking values at the
vertex set exU of the polyhedron U (in this case we say that u(·) is a bang-
bang control ). Further, assume that u(·) has only one switching at the point
t1 ∈ (0, T ). Let u− and u+ be the values of u(·) on the intervals (0, t1) and
(t1, T ), respectively. Then u−, u+ ∈ exU . Denote by

[u(·)](t1) = u(t1+)− u(t1−) = u+ − u−

the jump of u(·) at the switching point t1. Let p(·) ∈ M0. In what follows,
instead of [u(·)](t1) we write simply [u(·)], for brevity.

Define the function

∆H(t) = p(t)B(x(t))[u(·)],

and set

D−(H) =
d

dt
∆H(t1 − 0), D+(H) =

d

dt
∆H(t1 + 0).

The following theorem is given in Milyutin and Osmolovskii (1998).

Theorem 5.1 For any p(·) ∈ M0, we have D−(H) = D+(H) ≥ 0.
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For any p(·) ∈ M0, we denote by D(H) the common value of D−(H) and
D+(H).

For the triple (x(·), u(·), T ), we introduce the critical cone K as the set of all
triples z̄ = (T̄ , ξ̄, x̄(·)) such that the following conditions are satisfied

T̄ ∈ IR, ξ̄ ∈ IR, x̄(·) ∈ W 1,2([t1, T ], IR
n), (46)

x̄(t1) = [ẋ]ξ̄, x̄(T ) + ẋ(T )T̄ = 0, (47)

˙̄x(t) = fx(x(t), u(t))x̄(t), (48)

where [ẋ] := ẋ(t1+) − ẋ(t1−) is the jump of the function ẋ(t) at the point
t1, and W 1,2([t1, T ], IR

n) stands for the Sobolev space of absolutely continuous
functions x : [t1, T ] → IRn with square integrable derivative.

For p(·) ∈ M0, let us introduce the quadratic form of z̄:

Ω(z̄, p) = D(H)ξ̄2 + [ṗ]x̄(t1)ξ̄ − ṗ(T )ẋ(T )T̄ 2

−

∫ T

t1

〈Hxx((x(t), u(t), p(t))x̄(t), x̄(t)〉dt. (49)

Note that for p(·) ∈ M0 and z̄ = (T̄ , ξ̄, x̄(·)) ∈ K we obviously have

D(H)ξ̄2 + [ṗ]x̄(t1)ξ̄ = (D(H) + [ṗ][ẋ])ξ̄2.

The following theorem was obtained by Osmolovskii, see Milyutin and Os-
molovskii (1998).

Theorem 5.2 If (x(·), u(·), T ) is a strong local minimum and u(·) satisfies the
above assumptions, then the set M0 is nonempty, and for any z̄ ∈ K there exists
p ∈ M0 such that Ω(z̄, p) ≥ 0.

Denote by K1 the cross section of the cone K with the hyperplane T̄ = −1.
Obviously, K1 is defined by the relations

x̄(t1) = [ẋ]ξ̄, x̄(T ) = ẋ(T ), ˙̄x(t) = fx(x(t), u(t))x̄(t),

while Ω(z̄, p) on K1 becomes

Ω(z̄, p) = (D(H) + [ṗ][ẋ])ξ̄2 − ṗ(T )ẋ(T )

−

∫ T

t1

〈Hxx((x(t), u(t), p(t))x̄(t), x̄(t)〉 dt.

Note that the function ẋ(·) satisfies the equation

d

dt
(ẋ(t)) = fx(x(t), u(t))ẋ(t),



Extremals of time optimal control in the presence of friction and velocity limitation 317

since the function u(·) is piecewise constant. Further, assume that there is such
a number ξ̄ that

ẋ(t1+) = [ẋ]ξ̄. (50)

It means that the vectors ẋ(t1+) and [ẋ] are collinear (this is true if and only if
the vectors ẋ(t1−) and ẋ(t1+) are collinear). Then, obviously, the pair (ẋ(·), ξ̄)
belongs to the set K1. Thus, the following theorem holds.

Theorem 5.3 Suppose that (T, x(·), u(·)) is a strong local minimum, u(·) satis-
fies the above assumptions, M0 is a singleton, and the vectors ẋ(t1−) and ẋ(t1+)
are collinear. Let ξ̄ be such that ẋ(t1+) = [ẋ]ξ̄. Then

Ω1 := (D(H) + [ṗ][ẋ])ξ̄2 − ṗ(T )ẋ(T )−
∫ T

t1

〈Hxx((x(t), u(t), p(t))ẋ(t), ẋ(t)〉 dt ≥ 0. (51)

5.2. Second-order necessary conditions in Problem A

Let us apply the second-order necessary conditions, given above, to the extremal
(x(·), y(·), u(·), T ), described in the case E of the previous section. By Lemma
4.5, in this case MV (y) = ∅, and hence there is an ε > 0 such that y(t) < V − ε
for all t ∈ [0, T ]. Hence, the extremal (x(·), y(·), u(·), T ) in the problem with the
state constraint y ≤ V is an extremal in the problem without state constraint,
and this extremal has the same multipliers (β, p(·), dµ), where dµ = 0. By
Lemma 4.5, we have β > 0, and we can take β = 1 as the normalization
condition. Then the adjoint equation (24) becomes:

ṗ = p(·)w′(y(·)) + 1. (52)

This equation, together with condition p(t1) = 0, determines the function p(·)
uniquely. Hence, M0 = {p} is a singleton. Since p(t1) = 0, equation (52) implies
ṗ(t1) = 1. Further,

∆H(t) = p(t)[u(·)] = p(t)(b − a)

and hence

D(H) =
d

dt
∆H(t1) = (b − a) > 0.

Recall that ẋ(t) = y(t), ẏ(t) = −w(y(t)) + u(t), and therefore

ẋ(t1) = y(t1) = 0, ẏ(t1−) = u(t1−) = a, ẏ(t1+) = u(t1+) = b.

All conditions of Theorem 5.3 are fulfilled. Condition (50) is equivalent to
ẏ(t1+) = [u]ξ̄, that is: b = (b − a)ξ̄, whence ξ̄ = b/(b− a).

Further. we have

D(H)ξ̄2 =
b2

b− a
, Hxx = Hxy = 0, Hyy = −pw′′(y).
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Therefore,

Ω1 =
b2

b− a
− ṗ(T )ẏ(T ) +

∫ T

t1

p(t)w′′(y(t))ẏ2(t) dt.

Let us show that if T is close enough to t1, then Ω < 0. Indeed, equation
(52) and the relations

ẏ(t) = −w(y(t)) + u(t), y(t1) = 0, p(t1) = 0

imply

ṗ(T ) → ṗ(t1) = 1, ẏ(T ) → ẏ(t1+) = b as T → t1 + .

Moreover,
∫ T

t1

p(t)w′′(y(t))ẏ2(t) dt → 0 as T → t1 + .

Since
b2

b− a
− b =

ab

b− a
< 0,

we get

Ω < 0 if T − t1 > 0 is small enough.

This means that, for all T > t1, close enough to t1, the extremal
(x(·), y(·), u(·), T ) is not a strong local minimum. Then, this is true for every
T > t1, since each part of an optimal solution is an optimal solution.

Thus, we have shown that each solution of the problem A is an extremal of
the type A-D, but not E. Now, the final determination of the optimal solution
becomes much easier, because it is only required to find the values of at most
two parameters: t1 and t2. This can be done numerically.

6. Numerical example

We choose the following data:

w(y) = 0.1 y2, x(0) = y(0) = 0, x(T ) = 10, y(T ) = 0, a = −1, b = 1.

Omitting the state constraint y(t) ≤ V we see that the optimal control is bang-
bang, switching from u(t) = 1 to u(t) = −1 at t1 = 4.2507. The minimal
terminal time is T = 6.51. We find max y(t) = 2.7597 .

Hence, let us choose the state constraint y(t) ≤ V = 1.5. We get the
numerical results

T = 8.171755, p1 = 2/3, p2(0) = 1,

and a boundary arc in [1.631, 6.771] with η(t) = p1 = 2/3. A comparison of the
unconstrained solution (lighter) and the constrained solution (darker) is shown
in Figure 1.
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Figure 1: Unconstrained solution (lighter) and state constrained solution with
y(t) ≤ V = 1.5 (darker) for the numerical example

7. Some general theoretical results related to Problem A

Some of the results of this paper can be considered as special cases of the results
by Maurer (1977, 1979), see also Hartl (1995). Let us briefly discuss these issues,
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which also result in an explicit formula for the density of the multiplier µ.
The state constraint ϕ(y) = y − V ≤ 0 has order one, since the the total

time derivative

ϕ(1)(y(t), u(t)) :=
d

dt
ϕ(y(t)) =

d

dt
(y(t)− V ) = u(t)− w(y(t))

satisfies the regularity condition

d

du
ϕ(1)(y(t), u(t)) = 1 6= 0.

A boundary arc y(t) = V for t1 ≤ t ≤ t2 with t1 < t2 then gives the boundary
control u(t) = w(V ) in view of ẏ = 0. The boundary control should satisfy the
control constraint. Hence, it is reasonable to even require a < w(V ) < b. Then,
it follows from the results in Maurer (1979) on the regularity of the multiplier
µ, associated with a state constraint (a measure), that µ has a density η on
boundary arcs, i.e., dµ(t) = η(t) dt with η ≥ 0. This is shown by Maurer (1979)
in a much more general context than for the control problem above. We can
define the augmented Hamiltonian H̄ by directly adjoining the state constraint
to the standard Hamiltonian,

H̄(x, y, p1, p2, η, u) = p1y + p2(−w(y) + u)− η(y − V ).

(The meaning of the function η(t) becomes only clear through the discussion
below, where the state constraint is directly adjoined to the standard Hamil-
tonian by η; as it was said, the existence of η(t) follows from the results of
Maurer, 1979.) Upon defining the switching function Φ(t) = p2(t), the control
that maximizes the Hamiltonian is given by

u(t) =

{

a if Φ(t) < 0,
b if Φ(t) > 0,

If the switching function vanishes on an interval we obtain a singular arc.
Now suppose that we have a boundary arc with y(t) = V , for t1 ≤ t ≤ t2, for

which the reasonable assumption a < w(V ) < b holds for the boundary control.
Then, the maximum principle implies Φ(t) = p2(t) = 0 for t1 ≤ t ≤ t2. Hence,
the boundary control formally behaves like a singular control. This fact has
been extensively used in Maurer (1977) to derive junction theorems for joining
interior arcs with boundary arcs. Here, in particular, one obtains the continuity
of the adjoint variables, since the control is discontinuous at the entry and exit
points of the boundary arc. Since p2(t) = 0, we obtain the multiplier η in the
Hamiltonian simply from 0 = ṗ2(t) = −H̄y = −p1 + η, which gives

η(t) = p1 (constant).

The ”importance” of computing η(t) lies in the fact that ηi appears as mul-
tiplier of the pointwise state constraint ϕ(yi) ≤ 0 in the discretized control
problem. Then, the directly computed discretized values ηi must coincide with
p1.
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8. Another approach

In this manner, the problem has been investigated to the end. Although the
study required some effort, the result was quite predictable. In the main case
(when the distance between the points x0 and xT is big enough) the optimal
mode is as follows: first acceleration with control u(t) = b, then the movement
with maximal possible speed y(t) = V and the control u(t) = w(V ), and then
the deceleration with control u(t) = a. If the distance xT −x0 is not big enough,
then one or two of these regimes may be absent.

Let us show that this result can be obtained practically without any theory.
Consider again the control system

ẋ(t) = y(t), ẏ(t) = −w(y(t)) + u(t), u(t) ∈ [a, b], t ∈ [0, T ]. (53)

Assuming that ẋ = y > 0, we can take x as a new independent variable, and
consider y and u as the functions depending on x: y = y(x) ≤ V , u = u(x) ∈
[a, b], x ∈ [x0, xT ]. Then, we get the following problem with the independent
variable x:

T (y) =

∫ xT

x0

dx

y(x)
→ min, (54)

dy(x)

dx
=

−w(y(x)) + u(x)

y(x)
, y(x0) = y0, y(xT ) = yT (55)

u(x) ∈ [a, b], y(x) ≤ V. (56)

Consider two curves, defined as the solutions to the Cauchy problems:

a)
dy(x)

dx
=

−w(y(x)) + b

y(x)
, x ≥ x0, y(x0) = y0,

and

b)
dy(x)

dx
=

−w(y(x)) + a

y(x)
, x ≤ xT , y(xT ) = yT ,

respectively.
The right hand side of the equation a) is positive and hence the function

ya(x), corresponding to the curve a), is increasing. This curve corresponds to
the acceleration with the control u(x) = b > 0.

The right hand side of the equation b) is negative, and hence the function
yb(x), corresponding to the curve b), is decreasing. This curve corresponds to
the deceleration with the control u(x) = a < 0.

Set

F = {(x, y) ∈ IR2 : x ∈ [x0, x1], y ∈ [0, V ], y ≤ ya(x), y ≤ yb(x)}.

Clearly, the graph of any admissible trajectory y(x), x ∈ [x0, x1] belongs to F .
Let ŷ be the trajectory, which corresponds to the upper bound of the figure F .
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Obviously, the functional (54) attains the minimal value (among all admissible
curves belonging to F) on the curve ŷ. This curve corresponds to the optimal
solution, which was found above by means of the maximum principle and the
second-order necessary condition.

This idea was told to the first author by Andrei V. Dmitruk, who used it in
his work with A.K. Vdovina, see Dmitruk and Vdovina (2016). Its implementa-
tion turned out to be possible due to the very simple, actually one-dimensional,
structure of the problem, and owing to the specific kind of the cost functional
(54) which depends only on y and whose integrand decreases on y: if y(x) ≤ ŷ(x)
for all x, then T (y) ≤ T (ŷ) by the comparison theorem for integrals.

In other, more complicated problems, the solution may be not so obvious,
and can hardly be found without application of first- and second-order opti-
mality conditions. For example, in a similar problem, but with energy cost
functional, the study, carried out using the maximum principle, produced less
obvious results, see Asnis, Dmitruk, Osmolovskii (1985).

9. Conclusion

We discussed the time optimal control problem for a nonlinear control system
with state constraint, which is a generalization of the classical problem of Pon-
tryagin et al. (1964) of minimization of time T for a material point controlled
by a limited force and moving along a straight line without friction. In our
generalization, the state constraint has the order one, and therefore the corre-
sponding Lagrange multiplier (the measure dµ) has no atoms, whereupon the
adjoint variable p(·) has no jumps.

Taking into account the existence of the solution, we found extremals of this
problem, satisfying the Dubovitskii – Milyutin maximum principle for problems
with state constraints. In the case, where the state constraint is not active, we
used second-order conditions to eliminate the corresponding extremal.

The maximum principle and the second order necessary conditions allowed
for showing that there are only four possible cases regarding optimal control,
which is a bang-bang or bang-singular-bang control with at most two switchings.
In the last case, the singular arc coincides with the boundary arc, and the
switchings of the control coincide with the entry and exit points of the boundary
arc. This is the main case, and it was illustrated by a numerical example.

We shortly discussed some theoretical results generalizing the results ob-
tained for our problem. On the other hand, we showed that due to the simple
one-dimensional structure of the problem, its solution can be obtained by using
rather primitive considerations, without involving the theory of the necessary
optimality conditions. This does not diminish the significance of the previous
study, where we illustrated an application of optimality conditions in the prob-
lem with state constraint. On the contrary, in our opinion, the number of such
illustrative examples of state constrained problems, admitting an analytical so-
lution, should be increased.
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