PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D DEM simulations of basic geotechnical tests with early detection of shear localization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with elementary geotechnical tests: triaxial and direct shear of cohesionless sand using the discrete element method (DEM). The capabilities of the numerical DEM code are shown, with a special focus on the early phenomena appearance in localization zones. The numerical tests were performed in 3D conditions with spherical grains. Contact moments law was introduced due to simulate not perfectly round sand grains. The influence of different physical parameters was studied, e.g. initial density or confining pressure. The sieve curve corresponded to the Karlsruhe sand [1]; however, in some tests, it was linearly scaled. Special attention was laid on the behaviour of the sand grains inside localization, e.g. rotation, porosity, fluctuations, etc. and forces redistribution. Emphasis was given on the pre-failure regime and early localization predictors.
Wydawca
Rocznik
Strony
48--64
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] Wu W., 1992, Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe, Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe.
  • [2] de Borst R., Műhlhaus H.B., 1992, Gradient dependent plasticity: formulation and algorithmic aspects, Int .J. Numer. Methods Eng. 35, 521–539.
  • [3] Tejchman J., Wu W., 1993, Numerical study on shear band patterning in a Cosserat continuum, Acta Mech. 99, 61–74.
  • [4] Brinkgreve R., 1994, Geomaterial models and numerical analysis of softening, Dissertation, Delft University, 1–153.
  • [5] Tejchman J., Herle I., Wehr J., 1999, FE-studies on the influence of initial density, pressure level and mean grain diameter on shear localisation, Int. J. Numer. Anal. Methods Geomech 23(15), 2045–2074.
  • [6] Tejchman J., 2004, Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements, Comput. Geotech. 31(8), 595–611.
  • [7] Tejchman J., Wu W., 2009, Non-coaxiality and stress-dilatancy rule in granular materials: FE investigation within micro-polar hypoplasticity, Int. J. Numer. Anal. Methods Geomech 33(1), 117-142.
  • [8] Tejchman J., Górski J., 2010, FE study of patterns of shear zones in granular bodies during plane strain compression, Acta Geotechnica 5(2), 95-112.
  • [9] Regueiro R.A., Borja R.I., 2001, Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity, Int. J. Solids Struct. 38(21), 3647–3672.
  • [10] Bobinski J., Tejchman J., 2014, Simulations of shear zones and cracks in engineering materials using eXtended Finite Element Method, I. J. Num. Anal. Meth. Geom., 1-6.
  • [11] Oda M., Kazama H., 1998, Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils, Geotechnique 48, 465–481.
  • [12] Ord A., Hobbs B., Regenauer-Lieb K., 2007, Shear band emergence in granular materials- a numerical study, Int. J. Numer. Anal. Methods Geomech. 31, 373–393.
  • [13] Pena A.A., Garcia-Rojo R., Herrmann H.J., 2007, Influence of particle shape on sheared dense granular media, Granular Matter 3(4), 279-292.
  • [14] Bi Z., Sun Q., Jin F., Zhang M., 2011, Numerical study on energy transformation in granular matter under biaxial compression, Granular Matter 13, 503–510.
  • [15] Pardoen B., Collin F., 2017, Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone, Computers and Geotechnics 85,351- 367.
  • [16] Conte E., Donato A., Troncone A., 2013, Progressive failure analysis of shallow foundations on soils with strain-softening behaviour, Computers and Geotechnics 54, 117-124.
  • [17] Kozicki J., Niedostatkiewicz M., Tejchman J., Mühlhaus H.-B., 2013, Discrete modelling results of a direct shear test for granular materials versus FE results, Granular Matter 15(5), 607-627.
  • [18] Zhang N., Evans T.M., 2018, Three dimensional discrete element method simulations of interface shear, Soils and Foundations 58(4), 941-956.
  • [19] Xue-Ying J., Wan-Huan Z., Yangmin L., 2017, Interface direct shearing behavior between soil and saw-tooth surfaces by DEM simulation, Procedia Engineering 175, 36-42.
  • [20] Cui L., O’Sullivan C., 2006, Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus, Géotechnique 56.
  • [21] Salazar A., Sáez E., Pardo G., 2015, Modeling the direct shear test of a coarse sand using the 3D Discrete Element Method with a rolling friction model, Computers and Geotechnics 67, 83-93.
  • [22] Bernhardt M. L., Biscontin G., O’Sullivan C., 2016, Experimental validation study of 3D direct simple shear DEM simulations, Soils and Foundations 56, 336-347.
  • [23] Rojek J., 2007, Discrete element modelling of rock cutting, Computer Methods in Materials Science 7(2), 224–230.
  • [24] Nitka M., Combe G., Dascalu C., Desrues J., 2011, Two-scale modeling of granular materials: a DEM-FEM approach, Granular Matter 13, 277-281.
  • [25] Utter B., Behringer R.P., 2004, Self-diffusion in dense granular shear flows, Phys. Rev. E. 69(3), 031308-1–031308-12.
  • [26] Abedi S., Rechenmacher A.L., Orlando A.D., 2012, Vortex formation and dissolution in sheared sands. Granular Matter 14, 695-705.
  • [27] Richefeu V., Combe G., Viggiani G., 2012, An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear, Geotechnique Letters 2, 113–118.
  • [28] Radjai F., Roux S., 2002, Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302.
  • [29] Williams J.R., Rege N., 1997, Coherent vortex structures in deforming granular materials. Mechanics of Cohesive-frictional Materials 2, 223-236.
  • [30] Kuhn M.R., 1999 Structured deformation in granular materials, Mechanics of Materials 31, 407-442.
  • [31] Alonso-Marroquin F., Vardoulakis I., Herrmann H., Weatherley D., Mora P., 2006, Effect of rolling on dissipation in fault gouges, Physical Review E., 74 031306.
  • [32] Tordesillas A., Muthuswamy M., Walsh S.D.C., 2008, Mesoscale measures of nonaffine deformation in dense granular assemblies, Journal of Engineering Mechanics 134(12), 1095- 1113.
  • [33] Liu X., Papon A., Mühlhaus H.B., 2012, Numerical study of structural evolution in shear band, Philosophical Magazine 92(28-30), 3501-3519.
  • [34] Peters J.F., Walizer L.E., 2013, Patterned nonaffine motion in granular media, Journal of Engineering Mechanics 139(10), 1479-1490.
  • [35] Ahuja R. K., Magnanti T. L., Orlin J. B., 1993, Network flows : theory, algorithms, and applications, Englewood Cliffs, N.J. Prentice Hall.
  • [36] Tordesillas, A., Kahagalage, S., Ras, C., Nitka, M., Tejchman, J., 2018, Interdependent evolution of robustness, force transmission and damage in a heterogeneous quasi-brittle granular material: from suppressed to cascading failure, arXiv preprint arXiv:1809.01491.
  • [37] Thornton C., Yin K. K., Adams M. J., 1996, Numerical simulation of the impact fracture and fragmentation of agglomerates, J. Phys., 29, 424–435.
  • [38] Herrmann H. J., Luding S., 1998, Modeling granular media on the computer, Continuum Mech. Therm. 4 (10), 189–231.
  • [39] Jiang M. J., Yu H.-S., Harris D., 2005, A novel discrete model for granular material incorporating rolling resistance, Computers and Geotechnics 32, 340–357.
  • [40] Kruyt N. P., Rothenburg L., 2006, Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials, JSTAT/2006/P07021.
  • [41] Zhu H. P., Zhou Z. Y., Yang R. Y., Yu A. B., 2007,Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci. 62, 3378–3396.
  • [42] Ketterhagen W. R., Amende M. T., Hancock B. C., 2008, Process modeling in the pharmaceutical industry using the discrete element method, Pharmaceutical Research and Development, DOI 10.1002/jps.21466.
  • [43] Nitka M., Tejchman J., Kozicki J., Leśniewska D., 2015, DEM analysis of micro- structural events within granular shear zones under passive earth pressure conditions, Granular Matter 3, 325-343.
  • [44] Cundall P. A., Hart R., 1992, Numerical modeling of discontinua, J. Eng. Comp. 9, 101–113.
  • [45] Danesh A., Asghar Mirghasemi A., Palassi M., 2020, Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM), Transportation Geotechnics 23.
  • [46] Szarf K., Combe G.,Villard P., 2009, Influence of the grains shape on the mechanical behavior of granular materials, AIP Conference Proceedings 1145(1), 357-360
  • [47] Zhao S., Zhao J., 2019, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int J Numer Anal Methods Geomech, 1-13.
  • [48] Kozicki J., Donze, F.V., 2008, A new open-source software developed for numerical simulations using discrete modelling methods, Computer Methods in Applied Mechanics and Engineering 197, 4429-4443.
  • [49] Šmilauer V., Chareyre B., 2011, Yade DEM Formulation, Manual.
  • [50] Zhao S., Evans T.M., Zhou X., 2018, Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils, Géotechnique 68 (12), 1085–1098.
  • [51] Zhao S., Evans T.M., Zhou X., 2018, Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects, International Journal of Solids and Structures 150 (1), 268-281.
  • [52] Zhao, S., Evans, T. M., Zhou, X., 2018b., Three-dimensional voronoi analysis of monodisperse ellipsoids during triaxial shear, Powder Technology 323, 323–336.
  • [53] Cundall P.A., Strack, O.D.L., 1979, A discrete numerical model for granular assemblies, Geotechnique 29, 47-65.
  • [54] Widuliński L, Kozicki J, Tejchman J., 2009, Numerical simulations of triaxial test with sand using DEM, Archives of Hydro-Engineering and Environmental Mechanics 56, 3–26.
  • [55] Skarżyński Ł., Kozicki J., Tejchman J., 2013, Application of DIC technique to concrete - study on objectivity of measured surface displacements, Experimental Mechanics, 53(9), 1545-1559.
  • [56] Leśniewska D., Nitka M., Tejchman J., Pietrzak M., 2020, Contact force network evolution in active earth pressure state of granular materials: photo-elastic tests and DEM, Granular Matter, 22-71.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd3f3958-a378-4c03-893e-44c053d092a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.