PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Preparation of different zinc compounds from a smithsonite ore through ammonia leaching and subsequent heat treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, firstly, the effects of ammonia concentration, leaching time and solid/liquid ratio on the leaching behaviour of zinc from a smithsonite (ZnCO3) ore sample in aqueous ammonia solutions were investigated at room temperature by chemical, X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy analyses. It was found that leaching ratio of zinc steeply increased from 30.1 to 76.2% with increasing ammonia concentration from 1.0 to 4.0 M and maximum zinc leaching ratio of 79.7% was reached after leaching in 13.3 M NH3 solution. The XRD pattern of the residue obtained after leaching in 4.0 M NH3 solution for 90 min at solid/liquid ratio of 0.15 g/mL, the optimum condition, showed that smithsonite phase in the ore sample almost completely dissolved whereas the gangue minerals goethite and calcite remained unaffected, confirming the selectivity of ammonia solution for zinc dissolution. Together with zinc, leaching ratios of cadmium were also determined. In second part of the study, precipitation tests (by complete drying at different temperatures) were conducted on dissolved zinc, carbonate and ammonia containing pregnant solutions obtained after selected leaching experiments. By complete drying of the pregnant solutions at low temperatures, i.e. 50°C, relatively pure solid zinc ammine carbonate (Zn(NH3)CO3) precipitates and at higher temperatures, i.e. 150°C, quite pure solid zinc carbonate hydroxide (Zn5(CO3)2(OH)6) precipitates could be prepared. High-temperature heating of Zn(NH3)CO3 and Zn5(CO3)2(OH)6 precipitates at 450°C yielded single-phase zinc oxide (ZnO). The chemical compositions, FT-IR spectra and scanning electron microscope (SEM) photographs of some of the precipitates were also presented.
Rocznik
Strony
96--106
Opis fizyczny
Bibliogr. 48 poz.. rys. kolor.
Twórcy
autor
  • Adana Alparslan Türkeş Science and Technology University, Mining Engineering Department, Sarıçam, Adana, Turkey
autor
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
  • Şırnak University, Mining Engineering Department, 73000, Şırnak, Turkey
  • Hacettepe University, Mining Engineering Department, 06800 Beytepe, Ankara, Turkey
Bibliografia
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M.S., RASHCHI, F., NAAZERI, M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149, 153-167.
  • AVERSA, G., BALASSONE, G., BONI, M., AMALFITANO, C., 2002. The mineralogy of the «Calamine» ores in SW Sardinia (Italy): preliminary results. Per. Mineral. 71, 201-218.
  • BAI, S., LI, C., FU, X., LIU, J., WEN, S., 2018. Characterization of zinc sulfide species on smithsonite surfaces during sulfidation processing: Effect of ammonia liquor. J. Ind. Eng. Chem. 61, 19-27.
  • BUCCA, M., DIETZEL, M., TANG, J., LEIS, A., KÖHLER, S.J., 2009. Nucleation and crystallization of otavite, witherite, calcite, strontianite, hydrozincite, and hydrocerussite by CO2 membrane diffusion technique. Chem. Geol. 266, 143-156.
  • CONN, J.B., HUMPHREY, W.K., MAGEE, J.V., WALLACE, W.J., 1956. Zinc oxide hyperfine: Preparation and properties. J. Am. Pharm. Assoc. 45, 311-313.
  • DING, Z., CHEN, Q., YIN, Z., LIU, K., 2013. Predominance diagrams for Zn(II)-NH3-Cl-H2O system. Trans. Nonferrous Met. Soc. China. 23, 832-840.
  • EHRET, W., GREENSTONE, A., 1943. Red zinc oxide. J. Am. Chem. Soc. 65, 872-877.
  • EHSANI, A., 2020. Evaluation of a Non-Sulfide Zinc Ore by Ammonia Leaching. PhD Thesis, Hacettepe University (in Turkish).
  • EHSANI, I., UCYILDIZ, A., OBUT, A., 2019. Leaching behaviour of zinc from a smithsonite ore in sodium hydroxide solutions. Physicochem. Probl. Miner. Process. 55, 407-416.
  • ERD, R.C., WHITE, D.E., FAHEY, J.J., LEE, D.E., 1964. Buddingtonite, an ammonium feldspar with zeolitic water. Am. Mineral. 49, 831-850.
  • FENG, L., YANG, X., SHEN, Q., XU, M., JIN, B. 2007. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores. Hydrometallurgy 89, 305-310.
  • FREEMAN, P.C., BRYANT, S.E., NEWMAN, O.M.G., 2005. A Process for Upgrading an Ore or Concentrate. WO2005/007900A1.
  • FRENAY, J. 1985. Leaching of oxidized zinc ores in various media. Hydrometallurgy 15, 243-253.
  • GHASEMI, S.M.S., AZIZI, A. 2018. Alkaline leaching of lead and zinc by sodium hydroxide: Kinetics modeling. J. Mater. Res. Technol. 7, 118-125.
  • HARVEY, T.G., 2006. The hydrometallurgical extraction of zinc by ammonium carbonate: A review of the Schnabel process. Miner. Process. Extr. Metall. Rev. 27, 231-279.
  • HIATT, V., HUFF, J.E., 1975. The environmental impact of cadmium: an overview. Int. J. Environ. 7, 277-285.
  • JU, S., MOTANG, T., SHENGHAI, Y., YINGNIAN, L., 2005. Dissolution kinetics of smithsonite ore in ammonium chloride solution. Hydrometallurgy, 80, 67-74.
  • KASAI, T., NIIKURA, T., SATO, M., HASHIMOTO, T., YAMASHITA, A., 1987. Process for Distillation-Crystallization of Zinc Carbonate, US4710215A.
  • KAYA, M., HUSSAINI, S., KURSUNOGLU, S., 2020. Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy, 195, 1-33.
  • KHAZENI, N., FOUDAZI, R., GHASSEMI, A., 2016. Zn(NH3)(CO3) inorganic helical framework for selective separation of carbon dioxide-Supplementary Data. Chem. Eng. J. 304, 369-375.
  • KUMAS, C., EHSANI, I., OBUT, A., 2020. Dissolution properties of a dolomite containing zinc ore in sodium hydroxide solutions. Scientific Mining Journal 59, 93-100.
  • LI, S., LI, H., CHEN, W., PENG, J., MA, A., YIN, S., ZHANG, L., YANG, K., 2018. Ammonia leaching of zinc from low-grade oxide zinc ores using the enhancement of the microwave irradiation. Int. J. Chem. Reactor Eng. 16, 1-9.
  • LIU, Z., ZHANG, J., LIU, Z., LI, Q., 2018. Thermodynamics of metal ion complex formation in the Zn2SiO4-NH3-(NH4)2SO4 -H2O system (II): Analysis of Si(IV) components and experimental verification. Hydrometallurgy 178, 77-83.
  • LOPEZ, F.A., CEBRIANO, T., GARCIA-DIAZ, I., FERNANDEZ, P., RODRIGUEZ, O., FERNANDEZ, A.L., 2017. Synthesis and microstructural properties of zinc oxide nanoparticles prepared by selective leaching of zinc from spent alkaline batteries using ammoniacal ammonium carbonate. J. Cleaner Prod. 148, 795-803.
  • MENG, X., HAN, K.N., 1996. The principles and applications of ammonia leaching of metals - a review. Miner. Process. Extr. Metall. Rev. 16, 23-61.
  • MOGHADDAM, J., SARRAF-MAMOORY, R., YAMINI, Y., ABDOLLAHY, M., 2005. Determination of the optimum conditions for the leaching of nonsulfide zinc ores (High-SiO2) in ammonium carbonate media. Ind. Eng. Chem. Res. 44, 8952-8958.
  • MONDILLO, N., HERRINGTON, R., BOYCE, A.J., WILKINSON, C., SANTORO, L., RUMSEY, M., 2018. Critical elements in non-sulfide Zn deposits: a reanalysis of the Kabwe Zn-Pb ores (central Zambia). Mineral. Mag. 82(S1), S89-S114.
  • MONDILLO, N., NIETO, F., BALASSONE, G., 2015. Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru. Am. Mineral. 100, 2484-2496.
  • NAYAK, A., JENA, M.S., MANDRE, N.R., 2021. Beneficiation of Lead-Zinc Ores – A Review. Miner. Process. Extr. Metall. Rev. https://doi.org/10.1080/08827508.2021.1903459.
  • PETERS, M.A., 1978. Process for Recovering Zinc from Steel-making Flue Dust. US4071357A.
  • QIN, W., LI, W., LAN, Z., QIU, G., 2007. Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc. Miner. Eng. 20, 694-700.
  • RAO, S., YANG, T., ZHANG, D., LIU, W.F., CHEN, L., HAO, Z., XIAO, Q., WEN, J.F., 2015. Leaching of low grade zinc oxide ores in NH4Cl–NH3 solutions with nitrilotriacetic acid as complexing agents. Hydrometallurgy 158, 101-106.
  • RICHARDSON, J.J., LANGE, F.F., 2009. Controlling low temperature aqueous synthesis of ZnO. 1. Thermodynamic analysis. Cryst. Growth Des. 9, 2570-2575.
  • SANTORO, L., BONI, M., ROLLINSON, G.K., MONDILLO, N., BALASSONE, G., CLEGG, A.M., 2014. Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): The benefits of QEMSCAN®. Miner. Eng. 69, 29-39.
  • SINHAMAHAPATRA, A., GIRI, A.K., PAL, P., PAHARI, S. K., BAJAJ, H.C., PANDA, A.B., 2012. A rapid and green synthetic approach for hierarchically assembled porous ZnO nanoflakes with enhanced catalytic activity. J. Mater. Chem. 22, 17227-17235.
  • SPINK, D.R., ROBINSON, M.C., NGUYEN, K.D., 1991. Hydrometallurgical Production of Zinc Oxide from Roasted Zinc Concentrates. US5028410A.
  • SPINK, D.R., STEIN, J.Y., 1986. Recovery of Base metal Values from Base Metal and Iron-bearing Sulfide Materials. EP0192459A1.
  • STOILOVA, D., KOLEVA, V., VASSILEVA, V., 2002. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series. Spectrochim. Acta A 58, 2051-2059.
  • TALAN, D., ATALAY, M.U., ALTUN, N.E., 2017. Extraction of zinc from smithsonite by ammonia leaching. Proc. 3rd World Cong. Mecha. Chem. and Mater. Eng., pp. 1-6.
  • WANG, K., ZHANG, Q., HE, X., HU, H., LIU, Y., 2020. Mechanochemical leaching of Zn from low-grade smithsonite using Fe2(SO4)3 solution. Hydrometallurgy 198, 105497.
  • WANG, R., TANG, M., YANG, S., ZHAGN, W., TANG, C., HE, J., YANG, J., 2008. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Hl-H2O system. J. Cent. South. Univ. T. 15, 679-683.
  • WATARI, T., NANSAI, K., NAKAJIMA, K., 2021. Major metals demand, supply, and environmental impacts to 2100: A critical review. Resour. Conserv. Recycl. 164, 105107.
  • WEIR, C.E., LIPPINCOTT, E.R., 1961. Infrared studies of aragonite, calcite, and vaterite type structures in borates, carbonates and nitrates. J. Res. Natl. Inst. Stand. Technol. 65a, 173-183.
  • WEN, F., CHEN, J., KIM, J.H., KIM, T., LI, W., 2004. Solvothermal synthesis and characterization of Zn(NH3)CO3 single Crystal. Mat. Res. Soc. Symp. Proc. 817, L6.14, pp. 1-6.
  • WHITTAKER, E.J.W., ZABINSKI, W., 1981. X-ray diffraction by zincian dolomite. Mineralogia Polonica 12, 15-24.
  • WINIARSKI, J., TYLUS, W., WINIARSKA, K., SZCZYGIEL, I., SZCZYGIEL, B., 2018. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, Article ID 2079278, 14 pages.
  • XIA, Z.M., TANG, M.T., YANG, S.H., 2015. Materials balance of pilot-scale circulation leaching of low-grade zinc oxide ore to produce cathode zinc. Can. Metall. Q. 54, 439-445.
  • ZHAO, Y., STANFORTH, R., 2000. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores. Hydrometallurgy 56, 237-249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd3a39cf-f15b-4729-a985-58dd879343ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.