Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Absolute and effective permeability are two very important petrophysical parameters that govern the production of gas from hydrate-bearing sediments. In the present study, an attempt is made to estimate the permeability from well log data using a theoretical approach, which is validated by comparing the obtained results with the core-derived values. The log data of the well NGHP-02-16B in Krishna–Godavari basin is used for the purpose of computing the permeability, and the core data from the same site are used for validation. The absolute permeability in the reservoir estimated using the Timur method ranges from 0.1 to 100 mD, and matches well with the core sample permeability. It is also demonstrated that the hydrate saturation and the existing hydrate morphology in pore spaces of the sediments play a significant role in the computation of effective permeability. The computed P-wave velocities reveal that the hydrates occur within the pore spaces of the sediments with hydrate saturation of 44–90%. The effective permeability of the hydrate-bearing sediments obtained by the Masuda model with a permeability reduction exponent (N=2.5) agrees well with the core-derived permeability. The coating of the grain surfaces by the interspace hydrate within the pore is confirmed by comparison and normalization of effective permeability obtained from the Masuda model. The present study infers that the Masuda model is the most accurate and can be reliably used in the absence of core data for the computation of permeability of hydrate-bearing sediments in the vicinity of the study area.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1473--1490
Opis fizyczny
Bibliogr. 93 poz.
Twórcy
autor
- Marine Seismic Group, CSIR-National Geophysical Research Institute, Hyderabad 500007, India
- Present Address: Electrical Geophysics Group, CSIR-National Geophysical Research Institute, Hyderabad 500007, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad 201002, India
autor
- Marine Seismic Group, CSIR-National Geophysical Research Institute, Hyderabad 500007, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad 201002, India
Bibliografia
- 1. Anderson B, Steve H, Wilson S, Christopher E, Collett T, Boswell R, Hunter R (2011) Formation pressure testing at the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope: operational summary, history matching, and interpretations. Mar Pet Geol 28(2):478–492. https://doi.org/10.1016/j.marpetgeo.2010.02.012
- 2. Berg RR (1970) Method for determining permeability from reservoir rock properties. Trans Gulf Coast Assoc Geol Soc 20:303–335
- 3. Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relation-ships in rocks subjected to various evolution processes. Pure Appl Geophys 160:937–960
- 4. Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215
- 5. Carman P (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(2):262–273. https://doi.org/10.1017/S0021859600051789
- 6. Carcione JM, Tinivella U (2000) Bottom-simulating reflectors: seismic velocities and AVO effects. Geophysics 65:54–67. https://doi.org/10.1190/1.1444725
- 7. Carman PC (1937) Fluid fow through granular beds transactions. Inst Chem Eng Lond 15:150–166
- 8. Carmichael RS (1989) A practical handbook of physical properties of rocks and minerals. CRC Press, Boca Raton, p 741p
- 9. Chand S, Minshull TA, Gei D, Carcione JM (2004) Elastic velocity models for gas hydrate-bearing sediments—a comparison. Geophys J Int 159(2):573–590. https://doi.org/10.1111/j.1365-246X.2004.02387x
- 10. Coates G, Denoo S (1981) The productibility answer product. Schlumberger Tech Rev 29(2):54–63
- 11. Collett TS, Boswell R, Waite WF, Kumar P, Roy SK, Chopra K et al (2019) India National Gas Hydrate Program Expedition 02 summary of scientific results: gas hydrate systems along the eastern continental margin of India. Mar Petrol Geol 108:39–142. https://doi.org/10.1016/j.marpetgeo.2019.05.023
- 12. Collett TS (2008) Geologic and engineering controls on the production of permafrost association gas hydrate accumulations. In: Proceedings of the 16th international conference on gas hydrates, Vancouver
- 13. Dai S, Santamarina JC (2014) Sampling disturbance in hydrate-bearing sediment pressure cores: NGHP-01 expedition, Krishna-Godavari Basin example. Mar Pet Geol 58:178–186. https://doi.org/10.1016/j.marpetgeo.2014.07.013
- 14. Dai S, Seol Y (2014) Water permeability in hydrate-bearing sediments A pore-scale study. Geophys Res Lett 41(12):4176–4184. https://doi.org/10.1002/2014GL060535
- 15. Dai J, Xu H, Snyder F, Dutta N (2004) Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deep-water Gulf of Mexico. Lead Edge 23(1):60–66. https://doi.org/10.1190/1.1645456
- 16. Dai S, Santamarina JC, Waite WF, Kneafsey TJ (2012) Hydrate morphology: physical properties of sands with patchy hydrate saturation. J Geophys Res Sol Ea 117:B11205
- 17. Demirbas A (2010) Methane hydrate as Potential energy resource: part2-methane production processes from gas hydrates. Energy Convers Manag 51(7):1562–1571. https://doi.org/10.1016/j.enconman.2010.02.014
- 18. Detmer DM (1995) Permeability, porosity, and grain size distribution of selected Pliocene and quaternary sediments in Albuquerque basin, New Mexico. Geology 93023:79–87
- 19. Detmer DM (1995) Permeability, porosity, and grain-size distribution of selected Pliocene and 0uaternary sediments in the Albuquerque Basin. New Mexico Geol 361:C493023
- 20. Dong GY, Kang NK, Yi BY, Kim GY, Ryu BJ, Lee K, Lee GH, Riedel M (2013) Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Mar Petrol Geol 47(11):236–247
- 21. Dvorkin J, Nur A (1998) Acoustic signatures of patchy saturation. Int J Solids Struct 35:4803–4810. https://doi.org/10.1016/S0020-7683(98)00095-X
- 22. Dvorkin J, Prasad M, Sakai A, Lavoie D (1999) The elasticity of marine sediments: rock physics modeling. Geophys Res Lett 26(12):1781–1784. https://doi.org/10.1029/1999GL900332
- 23. Ecker C, Dvorkin J, Nur A (1998) Sediments with gas hydrates: internal structure from seismic AVO. Geophysics 63(5):1659–1669. https://doi.org/10.1190/1.1444462
- 24. Fox DG (1981) Judging air quality model performance. Bull Am Met Soc 62:599–609. https://doi.org/10.1175/1520-0477
- 25. Frenkel J (1944) On the theory of seismic and seismo-electric phenomena in moist soil. J Phys USSR 8:230–241
- 26. Fujii T, Noguchi S, Murry D, Takayama T, Fujii K, Yammoto K, Dallimore SR, Al- Juori A (2012) Overview of wireline-logging analysis in the Aurora/ JOGMEC/ NRCan Mallik 2L–38 gas hydrate production research well. Surv Can Bull 601:125–140
- 27. Gassmann F (1951) Über die Elastizität poröser Medien. Vierteljahrsschrift Der Naturforschenden Gesellschaft in Zürich 96:1–23
- 28. Gupta SK (2006) Basin architecture and petroleum system of Krishna Godavari Basin, east coast of India. Lead Edge 25(7):830–837. https://doi.org/10.1190/1.2221360
- 29. Harsono A (1994) Teknik Evaluasi log. IATMI. Schlumberger Data Services, Jakarta
- 30. Helgerud MB, Dvorkin J, Nur A, Sakai A, Collett TS (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26:2021–2024. https://doi.org/10.1029/1999GL900421
- 31. Helgerud MB (2001) Wave speeds in gas hydrate and sediments containing gas hydrate: a laboratory and modeling study. Doctoral dissertation, Stanford University, USA
- 32. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond Sect A 65:349–354. https://doi.org/10.1088/0370-1298/65/5/307
- 33. Holland ME, Schultheiss PJ, Roberts JA (2019) Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India. Mar Pet Geol 108:407–423. https://doi.org/10.1016/j.marpetgeo.2018.07.018
- 34. Huang Li Su, Zheng N-Y (2015) Potential of different lithological hydrate accumulations in marine environment. Energy 91:782–798. https://doi.org/10.1016/j.energy.2015.08.092
- 35. Jaiswal P, Al-Bulushi S, Dewangan P (2014) Logging-while-drilling and wireline velocities: Site NGHP-01-10, Krishna–Godavari Basin, India. Mar Pet Geol 58:331–338
- 36. Jang J, Santamarina J, Carlos J (2016) Hydrate bearing clayey sediments: formation and gas production concepts. Mar Pet Geol 77:235–246. https://doi.org/10.1016/j.marpetgeo.2016.06.013
- 37. Jang J, Waite WF, Stern LA, Collett TS, Kumar P (2018) Physical property characteristics of gas hydrate-bearing reservoir and associated seal sediments collected during NGHP-02 in the Krishna–Godavari Basin, in the offshore of India. J Mar Pet Geol 108:249–271. https://doi.org/10.1016/j.marpetgeo.2018.09.027
- 38. Kang DH, Yun TS, Kim KY, Jang J (2016) Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media. Geophys Res Lett 43(170):9018–9025
- 39. Katagiri J, Konno Y, Yoneda J, Tenma N (2017) Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates: verification of a Kozeny–Carman-based permeability reduction model. J Nat Gas Sci Eng 45:537–551. https://doi.org/10.1016/j.jngse.2017.06.019
- 40. Kleinberg RL, Flaum C, Griffin DD, Brewer PG et al (2003) Deep-sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J Geophys Res Solid Earth 108(B10):2508. https://doi.org/10.1029/2003JB002389
- 41. Konno Y, Masuda Y, Hariguchi Y, Kurihara M, Ouchi H (2010) Key factors for depressurization-induced gas production from oceanic methane hydrates. Energy Fuels 24:1736–1744
- 42. Konno Y, Jin Y, Uchiumi T, Nagao J (2013) Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments. Rev Sci Instrum 84:064501
- 43. Konno Y, Yoneda J, Egawa K, Ito T, Jin Y, Kida M, Suzuki K, Fujii T, Nagao J (2015) Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Mar Pet Geol 66:487–495. https://doi.org/10.1016/j.marpetgeo.2015.02.020
- 44. Konno Y, Kato A, Yoneda J, Oshima M, Kida M, Jin Y, Nagao J et al (2018) Numerical analysis of gas production potential from a gas-hydrate reservoir at Site NGHP-02-16, the Krishna–Godavari Basin, offshore India-feasibility of depressurization method for ultra-deepwater environment. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2018.08.001
- 45. Kozeny J (1927) Uber Kapillare Leitung des Wassers im Boden. Akad Wiss Wien 136:271–306 ((in German))
- 46. Krumbein WC, Monk GD (1943) Permeability as a function of size parameters of unconsolidated sand. Trans AIME 151(1):153. https://doi.org/10.2118/943153-G
- 47. Kumar A, Maini B, Bishnoi PR, Matthew C, Zatsepina O, Srinivasan S (2010) Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media. J Petrol Sci Eng 70(1–2):114–122. https://doi.org/10.1016/j.petrol.2009.10.005
- 48. Kumar P, Collett TS, Shukla KM, Yadav US, Lall MV, Vishwanath K, NGHP-02 Expedition Scientific Party (2018) India national gas hydrate program expedition-02: operational and technical summary. Mar Petrol Geol. https://doi.org/10.1016/j.marpetgeo.2018.11.021
- 49. Kurihara M, Sato A, Funatsu K, Ouchi H, Masuda Y, Narita H, Collett TS (2011) Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation. Mar Pet Geol 28:502–516
- 50. Lee MW, Collett TS (2005) Assessments of gas hydrate concentrations estimated from sonic logs in the JAPEX/ JNOC/GSC at Mallik 5L-38 gas hydrate research production well. In Dallimore SR, Collett TS (eds) Scientific results from the Mallik 2002 gas hydrate production research well program. Bull. Geol. Surv. Can, Makenzie Delta, Northwest Territories, Canada, pp 585. https://doi.org/10.4095/220702 (Open Access)
- 51. Lee MW, Collett TS (1999) Amount of gas hydrate estimated from compressional- and shear-wave velocities at the JPEX/JNOC/GSC Mallik 2L–38 gas hydrate research well. Bull Geol Surv Can 544:313–322
- 52. Lee MW, Collett TS (2001) Elastic properties of gas hydrate-bearing sediments. Geophysics 66(3):763–771
- 53. Lei L, Santamarina JC (2018) Laboratory strategies for hydrate formation in fine-grained sediments. JGR Solid Earth 123(4):2583–2596. https://doi.org/10.1002/2017JB014624
- 54. Li G, Li C, Li X, Wei N (2018) Permeability experiments on the methane hydrate in quartz sands and its model verification. Nat Gas Indus B 5(4):298–305
- 55. Li C H, Zhao Q, Xu H J, Feng K, Liu X W (2014) Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea. Appl Geophys 11:207–214. https://doi.org/10.1007/s11770-014-0432-6
- 56. Liang H, Song Y, Chen Y, Liu Y (2011) The measurement of permeability of porous media with methane hydrate. Petrol Sci Technol 29(1):79–87. https://doi.org/10.1080/10916460903096871
- 57. Mahabadi N, Dai S, Seol Y, Jang J (2016) The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochem Geophy Geosys 17(8):3099–3110
- 58. Masuda Y, Naganawa S, Ando S, Sato K (1997) Numerical calculationof gas-production performance from reservoirs containing natural gas hydrates. Paper presented at SPE 38291 SPE Western Regional Meeting, Long Beach
- 59. Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysts in porous media. Cambridge University Press, New York
- 60. Moridis G, Apps J, Pruess K, Myer L (1998) EOSHYDR: a tough2 module for CH4-hydrate release and flow in the subsurface. LBNL Report No. 42386
- 61. Morris RL, Biggs WP (1967) Using log derived values of water saturation and porosity, Trans. SPWLA Ann. Logging symposium, p 10–26
- 62. Motoi O, Suzuki K, Yoneda J, Kato A et al (2019) Lithological properties of natural gas hydrate-bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2019.01.015
- 63. Murphy WF (1982) Effects of Microstructure and Pore Fluids on the Acoustic Properties of Granular Sedimentary materials. Ph.D. Dissertation, Stanford University
- 64. Nur A, Mavko G, Dvorkin JJ, Galmudi D (1998) Critical porosity: a key to relating physical properties to porosity in rocks. Lead Edge 17:357–362. https://doi.org/10.1190/1.1437977
- 65. Oshima M, Suzuki K, Yoneda J, Kato A et al (2019) Lithological properties of natural gas hydrate–bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin. Mar Pet Geol 108. https://doi.org/10.1016/j.marpetgeo.2019.01.015
- 66. Pan HJ, Li HB, Chen JY, Zhang Y, Cai SJ et al (2019) A unified contact cementation theory for gas hydrate morphology detection and saturation estimation from elastic-wave velocities. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2019.104146
- 67. Parker JC, Lenhard RJ, Kuppusamy T (1987) A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour Res 23(4):618–624
- 68. Poli AA, Cirillo MC (1993) On the use of the normalized mean square error in evaluating dispersion model performance. Atmos Environ Part A Gen Top 27(15):2427–2434. https://doi.org/10.1016/0960-1686(93)90410-Z
- 69. Rao GN (2001) Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari Basin, east coast of India. Am Asso Petrol Geol Bull 85(9):1623–1643. https://doi.org/10.1306/8626CCDF-173B-11D7-8645000102C1865D
- 70. Ren XW, Guo Z, Ning F, Shuzhi M (2020) Permeability of hydrate-bearing sediments. Earth Sci Rev 202(2020):103100
- 71. Reuss A (1929) Berechnung der Fliessgrenzev yon Mischkristallen auf Grund der Plastizittitsbedingung far Einkristalle. Ztschr Fiir Angewandte Math U Mech 9:49–58
- 72. Sakamoto Y, Komai T, Miyazaki K, Tenma N, Yamaguchi T, Zyvoloski G (2010) Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir. J Thermodyn 2010:452326. https://doi.org/10.1155/2010/452326
- 73. Santamarina JC, Dai S, Terzariol M, Jang J, Waite WF et al (2015) Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Mar Petrol Geol 66(2):434–450. https://doi.org/10.1016/j.marpetgeo.2015.02.033
- 74. Sarin MM, Sudheer AK, Balakrishna K (2002) Significance of riverine carbon transport: a case study of a large tropical river, Godavari (India). Sci China Ser C 45:97–108
- 75. Schumann K, Michael S, Jan HB, Dirk K, Detlef S (2014) P and S wave velocity measurements of water-rich sediments from the Nankai Trough. Japan J Geophys Res Sol Ea 119(2):787–805
- 76. Seol Y, Kneafsey TJ (2011) Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media. J Geophys Res 116:B08102
- 77. Spangenberg E (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J Geophys Res Solid Earth 106(B4):6535–6548. https://doi.org/10.1029/2000JB900434
- 78. Spence GD, Haacke RR, Hyndman RD, Riedel M, Willoughby EC, Chopra S (2010) Seismic indicators of gas hydrate and underlying free gas. Geophysical Characterization of Gas Hydrates, Soc. Exploration Geophysicists
- 79. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, Hoboken
- 80. Timur A (1968) An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoirs. Log Anal 9(4):8
- 81. Tixier MP (1949) Evaluation of permeability from electric-log resistivity gradients. Oil Gas J 16:113
- 82. Uchida T, Waseda A, Namikawa T (2009) Methane accumulation and high concentration of gas hydrate in marine and terrestrial sandy sediments. In: Collett T, Johnson A, Knapp C, Boswell R (eds) Natural gas hydrates- energy resource potential and associated geologic hazards, AAPG Memoir. vol 89, pp 401–413
- 83. Uchida T, Tisuji T (2004) Petrophysical properties of natural gas hydrates-bearing sands and their sedimentology in the Nankai trough. Resour Geol 54(1):79–87
- 84. Van BJ 1(979) Quick-look permeability estimates using sidewall samples and porosity logs. trans. In: 6th Annual European logging symposium. Society of Professional Well Log Analysts
- 85. Waite WF, Santamarina JC, Cortes DD, Dugan B, Espinoza DN, Germaine J (2009) Physical properties of hydrate-bearing sediments. Rev Geophys 47:38. https://doi.org/10.1029/2008RG000279
- 86. Waite WF, Ruppel CD, Collett TS, Schultheiss P, Holland M, Shukla KM, Kumar P (2019) Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari Basin for sites cored during expedition NGHP-02 in the offshore of India. Mar Pet Geol 108:296–320. https://doi.org/10.1016/j.marpetgeo.2018.07.026
- 87. Westbrook G, Kate E, Eelco T, Rohling J, Alexander M, Pälike PH, Anne H et al (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett. https://doi.org/10.1029/2009GL039191
- 88. Wood WT, Stoffa PL, Shipley TH (1994) Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J Geophys Res Atmos 99(B5):9681–9695
- 89. Wyllie MRJ, Rose WD (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electric log data. Trans AIME 189:105p
- 90. Yoneda J, Oshima M, Kida M, Kato A, Konno Y, Jin Y et al (2018) Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India. Mar Pet Geol 108:524–536. https://doi.org/10.1016/j.marpetgeo.2018.07.006
- 91. Yoneda J, Oshima M, Kida M, Kato A, Konno Y, Jin Y, Tenma N (2019) Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India. Mar Pet Geol 108:512–523
- 92. Zawisza L (1993) Simplified method of absolute permeability estimation of porous beds. Arch Min Sci 38(4):343–352
- 93. Zou CC, Zhu J (2016) Elastic-wave velocity characterization of gas hydrate-bearing fractured reservoirs in a permafrost area of the Qilian Mountain, Northwest China. Mar Petrol Geol. https://doi.org/10.1016/j.marpetgeo.2016.08.017
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd38e01b-ac40-4e8a-a8a3-6fe48315b48a