PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of tribological and corrosion characteristics of AISI 316Ti and AISI 430 stainless steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents an investigation into the tribological, corrosion, and tribocorrosion properties of AISI 316Ti (austenitic) and AISI 430 (ferritic) stainless steels. The comparative analysis focuses on microstructural characterization, hardness, and a series of tribological, electrochemical, and tribocor-rosion tests conducted in 0.9% NaCl using a specialized linear tribometer to reveal the quality of the studied materials in tribocorrosion applications. Friction tests were performed under both dry and cor-rosive conditions, while tribocorrosion tests were conducted under open circuit potential (OCP) con-ditions in 0.9% NaCl, with the electrode potential of the test specimen monitored during friction. To evaluate the electrochemical behavior of the materials, potentiodynamic polarization and electrochem-ical impedance spectroscopy (EIS) were conducted using a 0.9% NaCl solution. The measured corro-sion potential (Ecorr) suggests that AISI 430 is thermodynamically more stable than AISI 316Ti; how-ever, AISI 316Ti demonstrated higher polarization resistance (RP) values compared to AISI 430. The findings indicate that material qualities significantly influence the coefficient of friction (CoF). Addi-tionally, a notable antifriction effect of 0.9% NaCl was observed during tribological testing, resulting in a lower CoF compared to dry friction conditions. A cathodic shift in OCP during tribocorrosion testing was also observed in both materials, indicating an increase in corrosion vulnerability when the passive layer is degraded.
Rocznik
Strony
565--576
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  • Kielce University of Technology, Al. 1000-lecia Państva Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Alaskari, A., Liptakova, T., Fajnor, P., Halamova, M., 2014. Mechanical sur-face treatments effects on corrosion of AISI 316 Ti stainless steel in chlo-ride environments. Journal of Engineering Research, 2, 1-17. DOI: 10.7603/s40632-014-0020-1
  • 2. Alkan, S., Gök, M. S., 2021. Effect of sliding wear and electrochemical po-tential on tribocorrosion behaviour of AISI 316 stainless steel in sea-water. Engineering Science and Technology, an International Journal, 24(2), 524-532. DOI: 10.1016/j.jestch.2020.07.004
  • 3. Bailey, R., Sun, Y., 2023. Corrosive-Wear Performance of Grade 316 Stain-less Steel Sliding Against Grade 316 Stainless Steel in NaCl Solution. Journal of Materials Engineering and Performance, 1-13. DOI: 10.1007/s11665-023-09065-z
  • 4. Borko, K., Pastorek, F., Hadzima, B., 2017. Electrochemical Corrosion Char-acteristics of High Strength Low Alloy Domex 700 Steel After Mechan-ical Surface Treatment in Chloride Environment. KOM–Corrosion and Material Protection Journal, 61(5), 162-168. DOI: 10.1515/kom-2017-0020
  • 5. Bronček, J., Dzimko, M., Hadzima, B., Takeichi, Y., 2014. Experimental in-vestigations of aluminium alloys 2024–T 3 form in terms of tribocorro-sion characteristics. Acta Metallurgica Slovaca, 20(1), 97-104. DOI: 10.12776/ams.v20i1.273
  • 6. Cramer, S. D., Covino, B. S., 2003. ASM handbook volume 13a: corrosion: fundamentals, testing and protection. Ohio: Materials Park, Ohio, USA.
  • 7. Diomidis, N., Celis, J. P., Ponthiaux, P., Wenger, F., 2010. Tribocorrosion of stainless steel in sulfuric acid: Identification of corrosion–wear compo-nents and effect of contact area. Wear, 269(1-2), 93-103. DOI: 10.1016/j.wear.2010.03.010
  • 8. Diomidis, N., Göçkan, N., Ponthiaux, P., Wenger, F., Celis, J. P., 2009. As-sessment of the surface state behaviour of Al71Cu10Fe9Cr10 and Al3Mg2 complex metallic alloys in sliding contacts. Intermetallics, 17(11), 930-937. DOI: 10.1016/j.intermet.2009.04.003
  • 9. Fajnor, P., Liptáková, T., Konstantová, V., 2010. Influence of AISI 316TI stainless steel surface treatment on pitting corrosion in various solutions. Materials Engineering, 17(3), 21-27.
  • 10. Fellah, M., Labaïz, M., Assala, O., Iost, A., Dekhil, L., 2013. Tribological behaviour of AISI 316L stainless steel for biomedical applications. Tri-bology-Materials, Surfaces & Interfaces, 7(3), 135-149. DOI: 10.1179/1751584X13Y.0000000032
  • 11. Fritz, J., 2020. Practical guidelines for the fabrication of austenitic stainless steels. International Molybdenum Association, London, UK.
  • 12. Gudić, S., Nagode, A., Šimić, K., Vrsalović, L., Jozić, S., 2022. Corrosion behavior of different types of stainless steel in PBS solution. Sustainabil-ity, 14(14), 8935. DOI: 10.3390/su14148935
  • 13. Hiromoto, S., Mischler, S., 2006. The influence of proteins on the fretting–corrosion behaviour of a Ti6Al4V alloy. Wear, 261(9), 1002-1011. DOI: 10.1016/j.wear.2006.03.032
  • 14. Hu, J., Zeng, Q., 2022. Friction and wear in nanoscratching of single crystals: effect of adhesion and plasticity. Nanomaterials, 12(23), 4191. DOI: 10.3390/nano12234191
  • 15. Jegdić, B., Dražić, D. M., Popić, J. P., 2008. Open circuit potentials of metal-lic chromium and austenitic 304 stainless steel in aqueous sulphuric acid solution and the influence of chloride ions on them. Corrosion Science, 50(5), 1235-1244. DOI: 10.1016/j.corsci.2008.01.012
  • 16. Ji, X., Luo, C., Jin, J., Zhang, Y., Sun, Y., Fu, L., 2022. Tribocorrosion per-formance of 316L stainless steel enhanced by laser clad 2-layer coating using Fe-based amorphous powder. Journal of Materials Research and Technology, 17, 612-621. DOI: 10.1016/j.jmrt.2022.01.046
  • 17. Jun, C., Yan, F. Y., 2012. Tribocorrosion behaviors of Ti–6Al–4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater. Transactions of Nonferrous Metals Society of China, 22(6), 1356-1365. DOI: 10.1016/S1003-6326(11)61326-5
  • 18. Jun, C., Zhang, Q., Li, Q. A., Fu, S. L., Wang, J. Z., 2014. Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Transactions of nonferrous metals society of China, 24(4), 1022-1031. DOI: 10.1016/S1003-6326(14)63157-5
  • 19. Leu, D. K., 2011. Evaluation of friction coefficient using indentation model of Brinell hardness test for sheet metal forming. Journal of mechanical science and technology, 25, 1509-1517. DOI: 10.1007/s12206-011-0134-4
  • 20. Li, D. G., Wang, J. D., Chen, D. R., Liang, P., 2015. Influence of molybdenum on tribo-corrosion behavior of 316L stainless steel in artificial saliva. Journal of Bio-and Tribo-Corrosion, 1, 1-9. DOI: 10.1007/s40735-015-0014-z
  • 21. Liu, E., Zhang, Y., Zhu, L., Zeng, Z., Gao, R., 2017. Effect of strain-induced martensite on the tribocorrosion of AISI 316L austenitic stainless steel in seawater. Rsc Advances, 7(71), 44923-44932. DOI: 10.1039/ C7RA07318F
  • 22. Lopez-Ortega, A., Bayón, R., Arana, J. L., Arredondo, A., Igartua, A., 2018. Influence of temperature on the corrosion and tribocorrosion behaviour of High-Strength Low-Alloy steels used in offshore applications. Tribol-ogy International, 121, 341-352. DOI: 10.1016/j.triboint.2018.01.049
  • 23. Maher, M., Iraola-Arregui, I., Youcef, H. B., Rhouta, B., Trabadelo, V., 2022. The synergistic effect of wear-corrosion in stainless steels: A review. Ma-terials Today: Proceedings, 51, 1975-1990. DOI: 10.1016/j.matpr. 2021.05.010
  • 24. Munoz, A. I., Espallargas, N., Mischler, S., 2020. Tribocorrosion. Springer International Publishing, Cham, Switzerland.
  • 25. Murkute, P., Pasebani, S., Isgor, B. O., 2020. Metallurgical and electrochem-ical properties of super duplex stainless steel clads on low carbon steel substrate produced with laser powder bed fusion. Scientific Reports, 10(1), 10162. DOI: 10.1038/s41598-020-67249-2
  • 26. Neslušan, M., Bronček, J., Minárik, P., Čapek, J., Vicen, M., Drbúl, M., 2022. Friction and wear of AISI 304 by the SiC ball and its monitoring via Barkhausen noise emission. Wear, 510, 204492. DOI: 10.1016/j.wear.2022.204492
  • 27. Obadele, B. A., Andrews, A., Shongwe, M. B., Olubambi, P. A., 2016. Tri-bocorrosion behaviours of AISI 310 and AISI 316 austenitic stainless steels in 3.5% NaCl solution. Materials Chemistry and Physics, 171, 239-246. DOI: 10.1016/j.matchemphys.2016.01.013
  • 28. Olsson, C. O., Landolt, D., 2003. Passive films on stainless steels—chemistry, structure and growth. Electrochimica acta, 48(9), 1093-1104. DOI: 10.1016/S0013-4686(02)00841-1
  • 29. Parker, M. E., Horton, D. J., Wahl, K. J., 2022. Tribocorrosion behavior of 2205 duplex stainless steel in sodium chloride and sodium sulfate envi-ronments. Tribology Letters, 70(3), 70. DOI: 10.1007/s11249-022-01601-7
  • 30. Pastorek, F., Borko, K., Dundeková, S., Fintová, S., Hadzima, B., 2016. Elec-trochemical corrosion characteristics of phosphated S355J2 steel in sul-fate environment. KOM–Corrosion and Material Protection Journal, 60(4), 107-113. DOI: 10.1515/kom-2016-0017
  • 31. Piotrowska, K., Madej, M., 2022. Influence of Thin Coatings Formed by ALD Techniques on the Properties of Ti13Nb13Zr Titanium Alloy. Tribologia. DOI: 10.5604/01.3001.0015.8985
  • 32. Sun, Y., Rana, V., 2011. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Materials Chemistry and Physics, 129(1-2), 138-147. DOI: 10.1016/j.matchemphys.2011.03.063
  • 33. Tan, L., Wang, Z., Ma, Y., 2021. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in typical corrosive media. Acta Met-allurgica Sinica (English Letters), 34, 813-824. DOI: 10.1007/s40195-020-01182-1
  • 34. Zatkalíková, V., Podhorský, Š., Štrbák, M., Liptáková, T., Markovičová, L., Kuchariková, L., 2022. Plasma electrolytic polishing—An ecological way for increased corrosion resistance in austenitic stainless steels. Ma-terials, 15(12), 4223. DOI: 10.3390/ma15124223
  • 35. Zatkalíková, V., Uhríčik, M., Markovičová, L., Pastierovičová, L., Kucha-riková, L., 2023. The Effect of Sensitization on the Susceptibility of AISI 316L Biomaterial to Pitting Corrosion. Materials, 16(16), 5714. DOI: 10.3390/ma16165714
  • 36. Zhang, B., Wang, J., Zhang, Y., Han, G., Yan, F., 2016. Comparison of tri-bocorrosion behavior between 304 austenitic and 410 martensitic stain-less steels in artificial seawater. Rsc Advances, 6(109), 107933-107941. DOI: 10.1039/C6RA18497A
  • 37. Zhang, Y., Zhang, Y., Wen, L., Kong, W., Yang, Y., Zhu, J., Jin, Y., 2022. Study of Temperature on the Corrosion Behavior of Antibacterial Steel by a Large− Scale Multiphase Flow Corrosion Test Loop. Materials, 15(21), 7472. DOI: 10.3390/ma15217472
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd35cbe0-84fd-4c6c-8511-8918ca92838b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.