PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of heating rate on sorbitic transformation temperature of tempering C45 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the analysis of speed heating influence on sorbitic transormation temperature of tempering C45 steel is presented. On the basis of dilatometric research, functions associating heating time with initial and final temperature of sorbitic transformation have been determined as well as the size structural (γ) and thermal (α) expansion coefficients of quenching and tempering structures have been estimated.
Rocznik
Strony
131--134
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowski st. 73, 42-200 Czestochowa, Poland
autor
  • Department of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dabrowski st. 73, 42-200 Czestochowa, Poland
Bibliografia
  • [1] K.J. Bimal, S.M. Nirmalendu, Microstructural evolution during tempering of multiphase steel containing retained austenite, Mat. Sci. Eng. A263 (1999) 42-55.
  • [2] M. Gojic, L. Kosec, P. Matkovic, The effect of tempering temperature on mechanical properties and microstructure of low alloy Cr and CrMo steel, J. Mat. Sci. 33 (1998) 395-403.
  • [3] I. Tkalcec, C. Azcoıtia, S. Crevoiserat, D. Mari, Tempering effects on a martensitic high carbon steel, Mat. Sci. Eng. A 387–389 (2004) 352–356.
  • [4] I. Tkalcec I., Mechamical properties and microstructure of a high carbon steel, PhD Thesis No 3089, Ecole Polytechnique Federale de Lausanne, 2004, pp. 75-85.
  • [5] L.W. Shyan, D.T. Tian, Mechanical and microstructural featu-res of AISI 4340 high-strength alloy steel under quenched and tempered conditions, J. Mat. Proc. Techn. 87 (1999) 198-206.
  • [6] A.K. Lis, Mechanical properties and microstructure of ULCB steels affected by thermomechanical rolling, quenching and tempering, J. Mat. Proc. Techn. 106 (2000) 212-218.
  • [7] V.I. Kostylev, B.Z. Margolin, Determination of residual stress and strain fields caused by cladding and tempering of reactor pressure vessels, Press. Vess. Pipp., 77 (2000) 723-735.
  • [8] E. Wakai, T. Taguchi, T. Yamamoto, F. TakadaEffect of tempering temperature and time on tensile properties of F82H irradiated by neutrons, J. Nuclear Mater. 329–333 (2004) 1133–1136.
  • [9] Shi Wei, Yao Ke-fu, Chen Nan, Wang Hong-peng, Experimental study of microstructure evolution during tempering of quenched steel and its application, Proceedings of the 14-th IFHTSE Congress, Trans. Mat. Heat Treatment, 25 (2004) No. 5 736-739.
  • [10] A.S. Oddy, J.M.J. McDill, Numerical prediction of microstructure and hardness in multicycle simulations, J. Mat. Eng. Perf. 1996 (5) No 3 June 365-372.
  • [11] R.K. Shiue, K.C. Lan, C. Chen C., Toughness and austenite stability of modified 9Cr-1Mo welds after tempering, Mat. Sci. Eng. A287 (2000) 10-16.
  • [12] M. Vijayalakshmi, S. Saroja, R. Mythili, V.Y. Paul, V.S. Raghunathan, Mechanism and kinetics of tempering in weldments of 9Cr-1Mo steel, J. Nucl. Mat. 279 (2000) 293-300.
  • [13] W. Piekarska, Numerical analysis of thermomechanical phenomena during laser welding process. The temperature fields, phase transformations and stresses, Monographes 135, Czestochowa University of Technol.2007 (in Polish).
  • [14] J.W. Elmer, T.A. Palmer, W. Zhang, B Wood , T. DebRoy, Kinetic modeling of phase transformations occurring in the HAZ of C-Mn welds based on direct observations, Acta Mater. 51 (2003) vol. 51, 3333-3349.
  • [15] A. Danon, C, Servant, A. Alamo, J.C. Brachet, Heterogeneous austenite grain growth in 9Cr martensitic steels: influence of the heating rate and the austenitization temperature, Mat. Sci. Eng. A348 (2003) 122-132.
  • [16] T. Miokovic, J. Schwarzer, V. Schulze, O. Vöhringer, D. Löhe, Description of short time phase transformations during the heating of steels based on high-rate experimental data, J. Phys. IV France 120 (2004) 591-598.
  • [17] J. Pacyna, A. Jędrzejewska –Strach, M. Strach, The effect of manganese and silicon on the kinetics of phase transformation during tempering – Continuous Heating Transformation (CHT) curves, J. Mat. Proc. Techn., 64 (1997) 311-318.
  • [18] J. Pacyna, P. Bała, T. Skrzypek, The kinetics of phase transformation during continuous heating from quenched state of new high carbon alloy steel, Metallurgist – Metall. Eng. News, 2006, No 2, p. 46-49 (in Polish).
  • [19] L. A. Dobrzański, Bases of sciences about materials and metal science. Engineering materials with bases of material designs. WN-T, Gliwice 2002, pp. 275 – 276 (in Polish).
  • [20] H.K.D.H. Bhadeshia, H. Badeshia, R.W.K. Honeycombe, Steel: microstructure and properties, Elsevier 2006, 183-208.
  • [21] M. Jung, S.J. Lee, Y.K. Lee, Microstructural and dilatational changes during tempering and tempering kinetics in martensitics medium-carbon steel, Metal. Mat. Trans. 40A (2009) 551-559.
  • [22] A. Kulawik, Numerical analysis of thermal and mechanical phenomena during hardening process of the 45 steel, PhD Thesis, Częstochowa 2005, p. 68 (in Polish).
  • [23] http://www.curveexpert.net/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd2da7a4-1efa-436f-a906-b15bd9dda3b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.