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Abstract 
 
In this paper the analysis of speed heating influence on sorbitic transormation temperature of tempering C45 steel is presented. On the 
basis of dilatometric research, functions associating heating time with initial and final temperature of sorbitic transformation have been 
determined as well as the size structural (γ) and thermal (α) expansion coefficients of quenching and tempering structures have been 
estimated. 
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1. Introduction 
 
In heat treatment processes tempering lasts depending on the 

size of the object from several dozen minutes to do a dozen or so 
hours, or even longer. In laser heat treatment processes next 
transitions of laser cause multiple phase changes. Areas already 
surfaced undergo tempering, in addition to which the process is 
dynamic. Thermal cycles in laser processes are distinguished by 
high speed of heating-up in comparison to thermal tempering and 
slight hold time in maximum temperature. 

In laser heat treatment processes, depending on steel genre 
and process parameters, can occur quenching structures, including 
martensite. In case of process connected with multiple laser beam 
transition cause tempering of already hardened areas.  

In order to forecast final structure of material after process 
ending or calculate strains and stress states in surfaced object it is 
necessary to take into account tempering pheomenon and a 
knowledge of its phase changes kinetics. 

A lot of works have been dedicated to examine the 
phenomenon of tempering. In most of them carried out 
experiments concern comparative metallographic analysis and 
mechanical properties (mostly hardness and impact strength) 
before and after the tempering [1-6]. While in modelling of stress 
states during tempering, the influence of phase changes is 
frequently omitted [7]. 

In the case of heat treatment the time of heating-up amounts 
to several dozen minutes, while annealing can last even hours [8]. 
The result is homogenous tempering structure. For such 
technological conditions, detailed analysis of changes in 
microstructure in steel C45 and Ni3.5CrMoV has been presented 
in work [9]. In welding processes and laser treatment occurs 
dynamic temperature change, while time of peak tempearture 
during tempering lasts from several to hundreds of seconds. Short 
austenisation time, as well as of tempering lead to heterogeneous 
structure. Work [10] examines the microstructure and hardness 
after multiple welding cycles, while in work [11] have been 
presented results of metallographic research, microhardness and 
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impact strength of welds tempered by conventional method. The 
authors [12] carried out analysis of tempering kinetics of welded 
elements basing on results of microhardness measurements. There 
is lack of works describing quantitatively the connection between 
strains and temperature during welding and laser processes. The 
speed of heating-up can significantly affect kinetics of heating-up 
transformations in steel both during austenitisation [13-16], as 
well as during heating-up from hardened stage (of tempering) 
[17,18]. 

 

2. Tempering in steels 
 

The tempering of steel are gererally categorized as follows 
[19-21]. In steels with coal content up to 0.2 wt.% tempering 
begins already in the environment temperature moving coal 
atoms. After that segregation from temperature 80°C occurs 
liberating of carbides – it proceeds most intensively in the 
temperature range between 150 - 200°C, ends mainly at 200°C, 
but sometimes at 250°C. As a result of reducing the amount of 
coal, tetragonality of martensite is decreasing. Created in the first 
phase of tempering structure, consisting of supersaturated solid 
solution α and carbide ε is called low-tempered martensite [19]. 

Between 200 and 350°C any retained austenite begins to 
decompose. It has been suggested that this happens by 
transformation into bainitic ferrite and cementite [19] and causes 
a volume increase when carbon concentration in austenite is 
small [21]. Above 350°C martensite decomposes liberating 
cement grains creating the phase called sorbite or troostite. In 
plain carbon steels cementite particles begin coarsen in the 
temperature range 350°C - 400°C, but addition of chromium, 
silicon, molybdenum or tungsten delays the coarsening to the 
range 500°C - 550°C [20]. Then the growth of grains occurs 
and coagulation of cementite particles, spheroidizing, i.e. 
forming tiny spherical particles of cementite in ferrite matrix.  

Tempering process ends in the temperature range 600 - 700°C. 
Above 600°C still proceeds coagulation of cementite and 
spheroidizing of ferrite – formation of divorced pearlite, i.e. 

globular cementite in ferrite matrix of low hardness. This stage is 
called recrystallization. 
 
 

3. Experimental research 
 

The chemical composition of researched steel is shown in 
Table 1. Dilatometric experiments were carried out in thermal 
cycle simulator Smitweld TCS1405. The influence of the rate of 
heating-up on the temperature of the beginning and the end of 
sorbitic transformation has been researched for the rate of heating 
from 0.1 to 100°C/s. 

Samples for tempering research have been heated-up to 
 1100°C, then cooled with the rate of cooling 200°C/s. Martensitic 
structure of hardened sample is presented in Fig. 1. The average 
value of hardness of hardened area was HV30 = 714. For each 
speed of heating have been made at least 3 dilatometric researches  

 

 
Fig. 1. Martensitic structure of a hardened sample 
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Fig. 2. Dilatometric curves for hardening-tempering cycles. 
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Table 1.  
Chemical composition of C45 steel. 

Elements content % 
C Mn Si P S Al Cr Ni Mo Cu 

0.440 0.660 0,250 0,015 0,024 0,017 0,110 0,100 0,025 0,240 
 

Table 2.  
Average temperature values Ts and Tf 

VH [0C/s] 0.1 0.2 0.5 1 2 5 10 20 30 40 50 60 100 
Ts [0C] 290 290 300 310 315 320 325 335 340 345 350 355 370 
Tf [0C] 420 420 430 435 440 450 465 470 475 480 485 490 500 

 
which allowed to determine temperature average values Ts of the 
beginning and Tf of the end of tempering process. Average values 
have been presented in Table 2. Dilatometric graph for hardening-
tempering cycles with the heating-up with the rate VH = 10°C/s 
has been presented in Fig. 2. 

From the analysis of dilatometric graphs, we can draw a 
conclusion that the first stage of tempering – the segregation of 
coal atoms and liberating carbides (to 290°C) do not affect 
significantly the shape of dilatometric curve. Distinct changes on 
dilatometric graphs have been observed in the temperature range 
290 - 500°C, during forming of sorbite. 

The dependence of temperature Ts on the heating rate can be 
approximated by Hoerl model [23] (Fig. 3): 

 
( ) ( )CH

V
Hs VabVT H=  (1) 

 
where: a = 306.16454, b = 1.0007254, c = 0.025137007, 
correlation coefficient is 0.997, while standard error 2.137. 
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Fig. 3.  Comparison of functions Ts(VH) and Tf(VH), 

and the experimental results. 
 
 
 

The dependence of temperature Tf on the heating rate can be 
approximated by Harris model [23] (Fig. 3): 

 

( )
( )CH

Hf Vba
VT

+
=

1  (2) 

 
where: a = 0.0025877464, b = -0.00028544502, c = 0.15680145,  
correlation coefficient is 0.999 and standard error 1.259. 
 

The CHT (Continuous Heating Transformations) diagram is 
presented in Fig. 4. On the basis of dilatometric measurements 
and results of works [22] have been determined thermal 
expansion coefficients and transformation strains (Table. 3). 
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Fig. 4. CHT diagram of C45 steel 

 
Table 3. 
Structural strains (γ) and thermal expansion coefficients (α) for 
phase of C45 steel. 

 α, 1/°C   

Austenite 2.178⋅10-5 γF,P,S→A 1.986⋅10-3 
Ferrite 1.534⋅10-5 γB→A 1.440⋅10-3 
Pearlite 1.534⋅10-5 γA→F,P 3.055⋅10-3 
Bainite 1.171⋅10-5 γA→B 4.0⋅10-3 
Martensite 1.36⋅10-5 γA→M 6.85⋅10-3 
Sorbite 1.534⋅10-5 γM→S 1.0⋅10-3 
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4. Conclusions 
 

In work has been made analysis of influence of the heating-up 
rate on tempering kinetics. On the basis of dilatometric graphs has 
been proposed the function bounding the rate of heating-up with 
the temperature of the beginning and the end of tempering phase 
changes. Quantities of transformation expansions and thermal 
expansion coefficients of hardening and tempering structures have 
been estimated. Determined quantities enable to describe the 
termomechanical changes (strain and stress) in steel  elements in 
laser treatment processes. 
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