PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Qp attenuation structure of the Koyna-Warna region, Maharashtra India, and its correlation to seismicity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we developed a three-dimensional (3D) (Qp) P-wave attenuation model of the uppermost crust (0-10 km depth) of the Koyna-Warna region (India). The inversion of attenuation operator (t*) is used to deduce a 3D Qp attenuation model using simul2000 code by assuming that t* is independent of frequency. A total of 276 earthquakes (1.0 ≤ ML ≤ 3.5) were used for this study, those providing 2045 t* values. The t* values are determined by fitting the observed P-wave amplitude spectrum with the theoretical spectrum by assuming an ω2 source model using a nonlinear least squares spectral-fitting algorithm. The tomography model shows the low Qp anomalies (~ 200-350) at shallow depth (0-3 km) that could be related to fracturing and cracks. The Qp value gradually increases with depth due to the closure of cracks and fractures as pressure increases from the lithostatic load. The high Qp (~ 500-600) are found in the intense seismic activity zone at 5-7 km depth where majority of the earthquakes were generated corresponds to the brittle crust and well correlated to higher Vp (~ 5.5-6.0 km/s) reported previously in the study area. We inferred that the high Qp is well correlated to seismicity likely associated with the dry to partially saturated rocks, which playing a vital role in the genesis of earthquakes in the study area.
Czasopismo
Rocznik
Strony
2603--2618
Opis fizyczny
Bibliogr. 93 poz., rys.
Twórcy
autor
  • CSIR-National Geophysical Research Institute, Hyderabad, India
  • CSIR-National Geophysical Research Institute, Hyderabad, India
  • CSIR-National Geophysical Research Institute, Hyderabad, India
Bibliografia
  • 1. Afif H, Nugraha AD, Muzli M, Widiyantoro S, Zulfakriza Z, Wei S et al (2021) Local earthquake tomography of the source region of the 2018 Lombok earthquake sequence, Indonesia. Geophys J Int 226(3):1814–1823. https://doi.org/10.1093/gji/ggab189
  • 2. Agrawal PK, Pandey OP, Chetty TRK (2004) Aeromagnetic anomalies lineaments and seismicity in Koyn-Warna region. J Indian Geophys Union 8:229–242
  • 3. Aki K (1967) Scaling law of seismic spectrum. J Geophys Res Solid Earth 72:1217–1230
  • 4. Aki K, Richards PG (1980) Quantitative seismology. Freeman & Co.
  • 5. Anderson JG (1986) Implication of attenuation for studies of earthquake sources. Earthq Source Mech 37:311–318
  • 6. Bhasker Rao YJ, Sreenivas B, Vijaya Kumar T, Khadke N (2017) Evidence for Neoarchean basement for the Deccan Volcanic flows around Koyna-Warna region, western India: Zircon U-Pb age and Hf-isotopic results. J Geol Soc India 90(6):752–760
  • 7. Bhattacharya SN (2007) Moment tensor solutions and triggering environment for earthquakes in the Koyna-Warna water reservoirs region, India. Pure Appl Geophys 164:909–928
  • 8. BIS (2002) IS 1893 (Part 1)—2002: Indian Standard Criteria for Earthquake Resistant
  • 9. Boitnott GN, Bonner BP (1994) Characterization of rock for constraining reservoir scale tomography at the geysers geothermal field. In: Proceedings, ninteenth Stanford workshop on geothermal reservoir. https://digital.library.unt.edu/ark:/67531/metadc873554
  • 10. Brune JN (1970) Tectonic stress and spectra of seismic shear waves from earthquakes. J Geophys Res Solid Earth 75:4997–5009
  • 11. Carder DS (1945) Seismic investigations in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on earthquake activity. Bull Seismol Soc Am 35:175–192
  • 12. Catchings RD, Dixit MM, Goldmen MR, Kumar S (2015) Structure of the Koyna-Warna seismic zone Maharashtra India: a possible model for large induced earthquakes elsewhere. J Geophys Res Solid Earth 119:6372–6398
  • 13. Chadha RK et al (1997) Delineation of active faults, nucleation process and pore pressure measurements at Koyna (India). Pure Appl Geophys 150:551–562
  • 14. Chen KJ, Yeh YH, Shyu CT (1996) Qp structure in the Taiwan area and its correlation to seismicity. Terr Atoms Ocean Sci 7:409–429
  • 15. Dainty AM, Toksoz MN (1990) Array analysis of seismic scattering. Bull Seismol Soc Am 80:2242–2260
  • 16. De Siena L, Del Pezzo E, Bianco F (2010) Seismic attenuation imaging of Campi Flegrei: evidence of gas reservoirs, hydrothermal basins, and feeding systems. J Geophys Res Solid Earth 115:B09312. https://doi.org/10.1029/2009JB006938
  • 17. Dixit MM, Kumar S, Catchings RD, Suman K, Sarkar D, Sen MK (2014) Seismicity faulting and structure of the Koyna-Warna seismic region western India from local earthquake tomography and hypocenter locations. J Geophys Res Solid Earth 119:6372–6398
  • 18. Dura-Gomez I, Talwani P (2010) Hydromechanics of the Koyna-Warna region, India. Pure Appl Geophys 167:183–213
  • 19. Eberhart-Phillips D (1986) Three-dimensional velocity structure in the northern California Coast Ranges from inversion of local earthquake arrival times. Bull Seismol Soc Am 76:1025–1052
  • 20. Eberhart-Phillips D (1993) Local earthquake tomography: earthquake source regions, in seismic tomography. In: Iyer HM, Hirahara K (eds) Theory and practice. Chapman and Hall, London, pp 613–643
  • 21. Eberhart-Phillips D, Chadwick M (2002) Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. J Geophys Res Solid Earth 107(B2):ESE3-1-ESE3-15
  • 22. Eberhart-Phillips D, Michael AJ (1998) Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity. J Geophys Res 103:21099–21120
  • 23. Eberhart-Phillips D, Chadwick M, Bannister S (2008) Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005359
  • 24. Gahalaut VK, Kalpana, Singh SK (2004) Fault interaction and earthquake triggering in Koyna-Warna region, India. Geophys Res Lett 31:L11614. https://doi.org/10.1029/2004GL019818
  • 25. Goswami D, Akkiraju VV, Misra S, Roy S, Singh SK, Sinha A, Gupta HK, Bansal BK, Naya S (2017) Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India. Tectonophysics 712–713(2017):182–192
  • 26. Goswami D, Roy S, Akkiraju VV (2019) Delineation of damage zones from 3 km downhole geophysical logs in the Koyna Seismogenic Zone, western India. J Geophys Res Solid Earth 124:6101–6120
  • 27. Guha SK, Gosavi PD, Varma MM, Agrawal SP, Padale JG, Marwadi SC (1968) Recent seismic disturbances in the Koyna Hydroelectric Project. Central Water and Power Research Station, Maharashtra
  • 27. Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water Reservoirs with special emphasis on earthquakes in Koyna India. Earth Sci Rev 58:279–310
  • 28. Gupta HK, Rastogi BK (1976) Dams and Earthquakes, 1st edn. Elsevier, Scientific Publishing Company, Amsterdam
  • 29. Gupta HK, Narain H, Rastogi BK, Mohan I (1969) A study of the Koyna Earthquake of Dec 10, 1967. Bull Seismol Soc Am 59:1149–1162
  • 30. Gupta SC, Teotia SS, Rai SS, Gautam N (1998) Coda Q estimates in the Koyna region, India. Pure Appl Geophys 153:713–731
  • 31. Hauksson E (2000) Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. J Geophys Res 105(B6):13875–13903
  • 32. Hauksson E, Shearer P (2006) Attenuation model (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths. J Geophys Res 111:B05302
  • 33. Havskov J, Ottemoller L (2005) SEISAN (version 8.1): the earthquake analysis software for Windows
  • 34. Hoshiba M (1993) Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope. J Geophys Res 98:15809–15824
  • 35. Husen S, Kissling E (2001) Local earthquake tomography between rays and waves: fat ray tomography. Phys Earth Planet Interiors 123(2001):129–149
  • 36. Jean JL, Rivera L, Wittlinger G (1993) On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys J Int 115:313–318
  • 37. Jin A, Mayeda K, Adams D, Aki K (1994) Separation of intrinsic and scattering attenuation in southern California using TERRA scope data. J Geophys Res 99:17835–17848
  • 38. Karato S (1993) Importance of anelasticity in the interpretation of seismic tomography. Geophys Res Lett 20:1623–1626
  • 39. Kumar S, Dixit MM (2017) Three- dimensional Velocity Structure of the Koyna-Warna Region using Local Earthquake Tomography. J Geol Soc India 90:692–697
  • 40. Kumar S, Kumar P (2019) One-dimensional velocity model, station correction and earthquake relocation of local earthquakes in the Koyna-Warna Region India. Pure Appl Geophy. https://doi.org/10.1007/s00024-019-02264-7
  • 41. Kusumita A, Srinu Y, Gopinadh D, Chadha RK, Raza H, Mikhailov V, Ponomarev A, Kiseleva E, Smirnov V (2017) Lineaments in Deccan Basalts: the basement connection in the Koyna-Warna RTS region. Bull Seismol Soc Am 108(5B):2919–2932
  • 42. Lees J, Lindley G (1994) Three-dimensional attenuation tomography at Loma Prieta: inverting t* for Q. J Geophys Res Solid Earth 99:6843–6863
  • 43. Lienert B, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seismol Res Lett 66(5):26–36
  • 44. Lin G, Shearer PM, Amelung F, Okubo PG (2015) Seismic tomography of compressional wave attenuation structure for Kılauea Volcano, Hawai‘i. J Geophys Res Solid Earth 120:2510–2524
  • 45. Liu X, Zhao D (2015) Seismic attenuation tomography of the Southwest Japan arcnew insight into subduction dynamics. Geophys J Int 201:135–156
  • 46. Mandal P, Singh RN (1996) Three-dimensional intraplate stress distributions associated with topography and crustal density inhomogeneities beneath the Deccan Volcanic Province. J Earth Syst Sci 105(2):143–155
  • 47. Mandal P, Rastogi BK, Sarma CSP (1998) Source parameters of Koyna earthquakes India. Bull Seismol Soc Am 88:833–842
  • 48. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(1963):431–441
  • 49. Mayeda K, Su F, Aki K (1991) Seismic albedo from the total seismic energy dependence on hypocentral distance in southern California. Phys Earth Planet Inter 67:104–114
  • 50. Mayeda K, Koyanagi S, Hoshiba M, Aki K, Zeng Y (1992) A comparative study of scattering intrinsic and coda Q−1 for Hawaii, Long Valley, and Central California between 1.5 and 15 Hz. J Geophys Res 97:6643–6659
  • 51. Misra S, Bartakke V, Athavale G, Akkiraju VV, Goswami D, Roy S (2017) Granite-gneiss basement below Deccan Traps in the Koyna region, western India: outcome from scientific drilling. J Geol Soc India 90(2017):776–782
  • 52. Padhy S, Subhadra N (2013) Separation of intrinsic and scattering seismic wave attenuation in Northeast India. Geophys J Int 195:1892–1903
  • 53. Pandey OP, Priyanka T, Nimisha V, Srinivasa DS (2016) Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharashtra (India): a case study. Pure Appl Geophys 173:2455–2471
  • 54. Peacock S, McCann C, Sothcott J, Astin TR (1994) Experimental measurements of seismic attenuation in microfractured sedimentary rock. Geophysics 59:1342–1351
  • 55. Peacock SM, Van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica –Nicaragua subduction zone. Phys Earth Planet Inter 149:187–200. https://doi.org/10.1016/j.pepi.2004.08.030
  • 56. Poupinet G, Ellsworth WL, Frechet J (1984) Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras Fault, California. J Geophys Res Solid Earth. https://doi.org/10.1029/JB089iB07p05719Citations
  • 57. Pozgay SH (2007) Seismic investigations of the mariana subduction system: anisotropy, attenuation, and volcano seismology. Washington Univ. in St. Louis, St. Louis, p 220
  • 58. Pozgay SH, Duglus W, Conder A, Shiobara JA, Sugioka H (2009) Seismic attenuation tomography of the Mariana subduction system: implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochem Geophys Geosyst. https://doi.org/10.1029/2008GC002313
  • 59. Rai SS, Singh SK, Sarma R, Srinagesh D, Reddy KNS, Prakasam KS, Satyanarayana Y (1999) What triggers Koyna region earthquakes? Preliminary results from seismic tomography digital array. Proc Earth Planet Sci 108:1–14
  • 60. Rajendran CP, Rajendran K (1996) Low-moderate seismicity in the vicinity of Palghat Gap, south India and its implications. Curr Sci 70:304–308
  • 61. Rastogi BK, Mandal P, Kumar K (1997) Seismicity around Dhamni Dam, Maharashtra, India. In: Rastogi BK, Mandal P, Kumar N (eds) Seismicity associated with mines, reservoirs and fluid injections. Birkhäuser, Basel, pp 493–509
  • 62. Rietbrock A (2001) P wave attenuation structure in the fault area of the 1995 Kobe earthquake. J Geophys Res Solid Earth 106:4141–4154
  • 63. Rubinstein JL, Vidale JE, Gomberg J, Bodin P, Creager KC, Malone SD (2007) Non-volcanic tremor driven by large transient shear stresses. Nature 448:579–582. https://doi.org/10.1038/nature06017
  • 64. Sanders CO (1993) Reanalysis of S-to-P amplitude ratios for gross attenuation structure, Long Valley Caldera. Calif J Geophys Res 98(B12):22069–22079
  • 65. Sarma SVS, Prasanta B, Patro K, Harinarayana T, Veeraswamy K, Sastry RS, Sarma MVC (2004) A magnetotelluric (MT) study across the Koyna seismic zone, western India: evidence for block structure. Phys Earth Planet Inter 142:23–36
  • 66. Sasmi AT, Nugraha AD, Muzli M, Widiyantoro S, Zulfakriza Z, Wei S, Sahara DP, Riyanto A, Puspito NT, Priyono A et al (2020) Hypocenter and magnitude analysis of aftershocks of the 2018 Lombok, Indonesia, earthquakes using local seismographic networks. Seismol Res Lett. https://doi.org/10.1785/0220190348
  • 67. Scherbaum F (1990) Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra. J Geophys Res Solid Earth 95:12423–12438
  • 68. Sharma B, Teotia SS, Kumar D (2007) Attenuation of P, S and Coda-Waves in Koyna Region, India. J Seismol 11(3):3327–3344
  • 69. Sharma B, Gupta A, Kameswari Devi D, Rastogi BK (2008) Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India. Bull Seismol Soc Am 98(5):2325–2340
  • 70. Sharma B, Teotia SS, Kumar D, Raju PS (2009) Attenuation of P- and S-waves in the Chamoli Region, Himalaya, India. Pure Appl Geophys 166(12):1949–1966
  • 71. Shashidhar D, Rao NP, Gupta HK (2011) Waveform inversion of broad-band data of local earthquakes in the Koyna-Warna region, western India. Geophys J Int 185(1):292–304
  • 72. Shashidhar D, Mallika K, Mahato C, Maity BS, Sudheer K, Satyanarayana HV et al (2019) A catalogue of earthquakes in the Koyna-Warna region, Western India (2005–2017). J Geol Soc India 93:7–24
  • 73. Simpson DW (1976a) Seismicity changes associated with reservoir loading. Eng Geol 10(1976):123–150
  • 74. Simpson DW (1976b) Seismicity changes associated with reservoir impounding. Eng Geol 10:371–385
  • 75. Simpson DW, Leith WS, Scholz CH (1988) Two types of reservoir-induced seismicity. Bull Seismol Soc Am 78:2025–2040
  • 76. Singh SK, Ordaz M, Dattatrayam RS, Gupta HK (1999) A spectral analysis of the May 21, 1997 Jabalpur, India earthquake (Mw=5.8) and estimation of ground motion from future earthquakes in the Indian shield region. Bull Seismol Soc Am 89:1620–1630
  • 77. Singh C, Singh A, Mukhopadhyay S, Shekar M, Chadha RK (2011) Lg attenuation characteristics across the Indian Shield. Bull Seismol Soc Am 101(5):2561–2567
  • 78. Srinagesh D, Singh S, Reddy KS, Prakasam KS, Rai SS (2000) Evidence for high velocity in Koyna seismic zone from p-wave teleseismic imaging. Geophys Res Lett 27:2737–2740
  • 79. Stein S, Wysession M (2003) An introduction to seismology, earthquakes and earth structure
  • 80. Talwani P (1997a) On the nature of Reservoir-induced seismicity; Pure and Applied Geophysics. 150 473–492.
  • 81. Talwani P (1997b) Seismotectonics of the Koyna-Warna Area India. Pure Appl Geophys 150:511–550
  • 82. Thurber CH (1983) Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J Geophys Res 88:8226–8236
  • 83. Thurber CH (1993) Local earthquake tomography: velocities and Vp/ Vs theory. In: Iyer HM, Hirahara K (eds) Seismic tomogrphy: theory and practice. Chapman and Hall, London, pp 563–583
  • 84. Thurber C, Eberhart-Phillips D (1999) Local earthquake tomography with flexible gridding. Comput Geosci 25:809–818
  • 85. Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seismol Soc Am 77:972–986
  • 86. Waldhauser F (2001) HypoDD: a computer program to compute double-difference earthquake locations. U.S. Geol. Surv. Open-File Rep., 01-113, Menlo Park, California
  • 87. Wang Z, Zhao D (2019) Updated attenuation tomography of Japan subduction zone. Geophys J Int 219:1679–1697
  • 88. Wang YJ, Ma KF, Mouthereau F, Eberhart-Phillips D (2010) Three-dimensional Qp- and Qs-tomography beneath Taiwan orogenic belt: Implications for tectonic and thermal structure. Geophys J Int 180:891–910
  • 89. Wei SS, Wiens DA (2018) P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes. Earth Planet Sci Lett 502:187–199. https://doi.org/10.1016/J.Epsl.2018.09.005
  • 90. Wessel P, Smith WHF (1995) A new version of the generic mapping tools (GMT). Eos Trans Am Geophys Union 76(33):329
  • 91. Wilson MP, Foulger GR, Gluyas JG, Davies RJ, Julian BR (2017) HiQuake: the human-induced earthquake database. Seismol Res Lett 88(6):1560–1565
  • 92. Zelt CA (1998) Lateral velocity resolution from three-dimensional seismic refraction data. Geophys J Int 135:1101–1112
  • 93. Zhao D, Kanamori H, Negishi H, Wiens D (1996) Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science 274:1891–1894. https://doi.org/10.1126/science.274.5294.1891
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd29aeb7-3c6e-4d9e-890e-1a41a90611ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.