PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Post-processing in multi-material 3D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose This study aims to investigate the adhesion of combining two materials with different properties (PLA-TPU and TPU-PLA) printed in FFF (fused filament fabrication) with post-processing treatments. Design/methodology/approach The scope of the study includes making variants of samples and subjecting them to three different post-printing treatments. After processes, shear tests were conducted to determine the adhesion. Findings The post-printing treatment results in a stronger inter-material bond and increased adhesion strength; the best average shear strength results were achieved for annealing without acetone and for PLA/TPU samples for treatment in cold acetone vapour. Research limitations/implications In the study, adhesion was considered in the circular pattern of surface development. Practical implications Reinforcement of the biopolymer broadens the possibilities of using polylactide. Examples of applications include personalised printing items, where the elastomer will strengthen the polylactide. Originality/value These studies aim to promote the use and expand the possibilities of using PLA biopolymer. The strength properties of printouts from different materials are often insufficient, hence the proposal to use post-printing processing.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-537 Łódź, Poland
Bibliografia
  • [1] J. Lee, H.C. Kim, J.W. Choi, I.H. Lee A review on 3D printed smart devices for 4D printing, International Journal of Precision Engineering and Manufacturing - Green Technology 4 (2017) 373-383. DOI: https://doi.org/10.1007/s40684-017-0042-x
  • [2] M. Shahbazi, H. Jäger, Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges, ACS Applied Bio Materials 4/1 (2021) 325-369. DOI: https://doi.org/10.1021/acsabm.0c01379
  • [3] G. Budzik, J. Woźniak, A. Paszkiewicz, Ł. Przeszłowski, T. Dziubek, M. Dębski, Methodology for the quality control process of additive manufacturing products made of polymer materials, Materials 14/9 (2021) 2202. DOI: https://doi.org/10.3390/ma14092202
  • [4] R. Citarella, V. Giannella, Additive manufacturing in industry, Applied Sciences 11/2 (2021) 840. DOI: https://doi.org/10.3390/app11020840
  • [5] S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, A. Arias, Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties, Materials and Design 188 (2020) 108414. DOI: https://doi.org/10.1016/j.matdes.2019.108414
  • [6] R. Anitha, S. Arunachalam, P. Radhakrishnan, Critical parameters influencing the quality of prototypes in fused deposition modelling, Journal of Materials Processing Technology 118/1-3 (2001) 385-388. DOI: https://doi.org/10.1016/S0924-0136(01)00980-3
  • [7] D. Yadav, D. Chhabra, R.K. Garg, A. Ahlawat, A. Phogat, Optimization of FDM 3D printing process parameters for multi-material using artificial neural network, Materials Today: Proceedings 21/3 (2020) 1583-1591. DOI: https://doi.org/10.1016/j.matpr.2019.11.225
  • [8] Y. Liu, J. Chen, E. Shang, Y. Chen, Process based modeling of energy consumption for multi-material FDM 3D printing, PREPRINT (Version 1) available at Research Square. DOI: https://doi.org/10.21203/rs.3.rs-44077/v1
  • [9] J. Taczała, W. Czepułkowska, B. Konieczny, J. Sokołowski, M. Kozakiewicz, P. Szymor, Comparison of 3D printing MJP and FDM technology in dentistry, Archives of Materials Science and Engineering 101/1 (2020) 32-40. DOI: https://doi.org/10.5604/01.3001.0013.9504
  • [10] J.R.C. Dizon, C.C.L. Gache, H.M.S. Cascolan, L.T. Cancino, R.C. Advincula, Post-Processing of 3D-Printed Polymers, Technologies 9/3 (2021) 61. DOI: https://doi.org/10.3390/technologies9030061
  • [11] T. Blachowicz, G. Ehrmann, A. Ehrmann, Optical elements from 3D printed polymers, e-Polymers 21/1 (2021) 549-565. DOI: https://doi.org/10.1515/epoly-2021-0061
  • [12] T. Tezel, M. Ozenc, V. Kovan, Impact properties of 3D-printed engineering polymers, Materials Today Communications 26 (2021) 102161. DOI: https://doi.org/10.1016/j.mtcomm.2021.102161
  • [13] A. Maguire, N. Pottackal, M.A.S.R. Saadi, M.M. Rahman, P.M. Ajayan, Additive manufacturing of polymer-based structures by extrusion technologies, Oxford Open Materials Science 1/1 (2021) itaa004. DOI: https://doi.org/10.1093/oxfmat/itaa004
  • [14] C. Culmone, G. Smit, P. Breedveld, Additive manufacturing of medical instruments: A state-of-the-art review, Additive Manufacturing 27 (2019) 461-473. DOI: https://doi.org/10.1016/j.addma.2019.03.015
  • [15] J. Chen, K. Wang, C. Zhang, B. Wang, An efficient statistical approach to design 3D- printed metamaterials for mimicking mechanical properties of soft biological tissues. Additive Manufacturing 24 (2018) 341-352. DOI: https://doi.org/10.1016/j.addma.2018.10.007
  • [16] L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Next- generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368/1917 (2010) 1999-2032. DOI: https://doi.org/10.1098/rsta.2010.0010
  • [17] M. Silva, I.S. Pinho, J.A. Covas, N.M. Alves, M.C. Paiva, 3D printing of graphene-based polymeric nanocomposites for biomedical applications, Functional Composite Materials 2/1 (2021) 8. DOI: https://doi.org/10.1186/s42252-021-00020-6
  • [18] C. Esposito Corcione, F. Gervaso, F. Scalera, F. Montagna, T. Maiullaro, A. Sannino, A. Maffezzoli, 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering, Journal of Polymer Engineering 37/8 (2017) 741-746. DOI: https://doi.org/10.1515/polyeng-2016-0194
  • [19] C. Esposito Corcione, F. Gervaso, F. Scalera, S.K. Padmanabhan, M. Madaghiele, F. Montagna, A. Sannino, A. Licciulli, A. Maffezzoli, Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling, Ceramics International 45/2 (2019) 2803-2810. DOI: https://doi.org/10.1016/j.ceramint.2018.07.297
  • [20] X. Zhou, G. Zhou, R. Junka, N. Chang, A. Anwar, H. Wang, X. Yu, Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration, Colloids and Surfaces B: Biointerfaces 197 (2021) 111420. DOI: https://doi.org/10.1016/j.colsurfb.2020.111420
  • [21] M.Y. Chen, J. Skewes, R. Daley, M.A. Woodruff, N.J. Rukin, Three-dimensional printing versus conventional machining in the creation of a metal urethral dilator: development and mechanical testing, BioMedical Engineering OnLine 19/1 (2020) 55. DOI: https://doi.org/10.1186/s12938-020-00799-8
  • [22] S. Kurt, S. Selviler‐Sizer, B. Onuk, M. Kabak, Comparison of sheep scapula models created with polylactic acid and thermoplastic polyurethane filaments by three‐ dimensional modelling. Anatomia, Histologia, Embryologia 51/2 (2022) 244-249. DOI: https://doi.org/10.1111/ahe.12784
  • [23] M.I. Mohammed, J. Tatineni, B. Cadd, G. Peart, I. Gibson, Advanced auricular prosthesis development by 3D modelling and multi-material printing, Proceedings of the International Conference on Design and Technology “DesTech 2016”, Knowledge E, 2017, 37-43. DOI: https://doi.org/10.18502/keg.v2i2.593
  • [24] L.A.G. Pinho, A.L. Lima, L.L. Sa-Barreto, T. Gratieri, G.M. Gelfuso, R.N. Marreto, M. Cunha-Filho, Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing, AAPS PharmSciTech 22/8 (2021) 263. DOI: https://doi.org/10.1208/s12249-021-02114-7
  • [25] B. Micó-Vicent, E. Perales, K. Huraibat, F.M. Martínez-Verdú, V. Viqueira, Maximization of FDM-3D-Objects Gonio-Appearance Effects Using PLA and ABS Filaments and Combining Several Printing Parameters: “A Case Study”, Materials 12/9 (2019) 1423. DOI: https://doi.org/10.3390/ma12091423
  • [26] A. Bouzouita, D. Notta-Cuvier, J.M. Raquez, F. Lauro, P. Dubois, Poly(lactic acid)-Based Materials for Automotive Applications, in: M. Di Lorenzo, R. Androsch (eds), Industrial Applications of Poly(lactic acid), Advances in Polymer Science, vol. 282, Springer, Cham, 2017, 177-219. DOI: https://doi.org/10.1007/12_2017_10
  • [27] S. Pervaiz, T.A. Qureshi, G. Kashwani, S. Kannan, 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review. Materials 14/16 (2021) 4520. DOI: https://doi.org/10.3390/ma14164520
  • [28] C. Amendola, M. Lacerenza, I. Pirovano, D. Contini, L. Spinelli, R. Cubeddu, A. Torricelli, R. Re, Optical characterization of 3D printed PLA and ABS filaments for diffuse optics applications, PLOS ONE 16/6 (2021) e0253181. DOI: https://doi.org/10.1371/journal.pone.0253181
  • [29] A. Cano-Vicent, M.M. Tambuwala, Sk.S. Hassan, D. Barh, A.A.A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Fused deposition modelling: Current status, methodology, applications and future prospects, Additive Manufacturing 47 (2021) 102378. DOI: https://doi.org/10.1016/j.addma.2021.102378
  • [30] M.-H. Hsueh, C.-J. Lai, S.-H. Wang, Y.-S. Zeng, C.-H. Hsieh, C.-Y. Pan, W.-C. Huang, Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling, Polymers 13/11 (2021) 1758. DOI: https://doi.org/10.3390/polym13111758
  • [31] Piyush, R. Kumar, R. Kumar, 3D printing of food materials: A state of art review and future applications, Materials Today: Proceedings 33/3 (2020) 1463-1467. DOI: https://doi.org/10.1016/j.matpr.2020.02.005
  • [32] R. Melnikova, A. Ehrmann, K. Finsterbusch, 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials, IOP Conference Series: Materials Science and Engineering 62 (2014) 012018. DOI: https://doi.org/10.1088/1757-899X/62/1/012018
  • [33] D. Koske, A. Ehrmann, Advanced Infill Designs for 3D Printed Shape-Memory Components, Micromachines 12/10 (2021) 1225. DOI: https://doi.org/10.3390/mi12101225
  • [34] J. Lüchtenborg, F. Burkhardt, J. Nold, S. Rothlauf, C. Wesemann, S. Pieralli, G. Wemken, S. Witkowski, B.C. Spies, Implementation of Fused Filament Fabrication in Dentistry, Applied Sciences 11/14 (2021) 6444. DOI: https://doi.org/10.3390/app11146444
  • [35] I. Buj-Corral, A. Bagheri, A. Domínguez-Fernández, R. Casado-López, Influence of infill and nozzle diameter on porosity of FDM printed parts with rectilinear grid pattern, Procedia Manufacturing 41 (2019) 288-295. DOI: https://doi.org/10.1016/j.promfg.2019.09.011
  • [36] L. Bergonzi, M. Vettori, L. Stefanini, L. D’Alcamo, Different infill geometry influence on mechanical properties of FDM produced PLA, IOP Conference Series: Materials Science and Engineering 1038/1 (2021) 012071. DOI: https://doi.org/10.1088/1757-899X/1038/1/012071
  • [37] K. Haghsefat, L. Tingting, FDM 3D Printing Technology and Its Fundemental Properties, Proceedings of the 6 th International Conference on Innovation and Research in Engineering Sciences “ICIRES”, Tbilisi, Georgia, 2020, 1-3.
  • [38] D. Popescu, A. Zapciu, C. Amza, F. Baciu, R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review, Polymer Testing 69 (2018) 157-166. DOI: https://doi.org/10.1016/j.polymertesting.2018.05.020
  • [39] D. Zieliński, FDM/FFF TECHNOLOGY: Printing durable elements from thermoplastics. (in Polish). Available from: https://drukarki3d.pl/technologie/technologia-fdm-fff/ (Access in: 05.07.2022)
  • [40] M. Budzinski. Materials for 3D printing with FDM technology (in Polish). Available from: https://tworzywaiguma.pl/materialy-do-druku-3d-technologia-fdm/ (Access in: 05.07.2022)
  • [41] S.D. Nath, S. Nilufar, An overview of additive manufacturing of polymers and associated composites, Polymers 12/11 (2020) 2719. DOI: https://doi.org/10.3390/polym12112719
  • [42] C. Esposito Corcione, F. Scalera, F. Gervaso, F. Montagna, A. Sannino, A. Maffezzoli, One-step solvent-free process for the fabrication of high-loaded PLA/HA composite filament for 3D printing, Journal of Thermal Analysis and Calorimetry 134/1 (2018) 575-582. DOI: https://doi.org/10.1007/s10973-018-7155-5
  • [43] D. Rigotti, A. Dorigato, A. Pegoretti, 3D printable thermoplastic polyurethane blends with thermal Energy storage/release capabilities. Materials Today Communications 15 (2018) 228-235. DOI: https://doi.org/10.1016/j.mtcomm.2018.03.009
  • [44] J.F. Christ, N. Aliheidari, A. Ameli, P. Pötschke, 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nano-composites, Materials and Design 131 (2017) 394-401. DOI: https://doi.org/10.1016/j.matdes.2017.06.011
  • [45] P. Striemann, D. Hülsbusch, M. Niedermeier, F. Walther, Optimization and Quality Evaluation of the Interlayer Bonding Performance of Additively Manufactured Polymer Structures, Polymers 12/5 (2020) 1166. DOI: https://doi.org/10.3390/polym12051166
  • [46] M. Chung, N. Radacsi, C. Robert, E.D. McCarthy, A. Callanan, N. Conlisk, P.R. Hoskins, V. Koutsos, On the optimisation of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry, 3D Printing in Medicine 4/1 (2018) 2. DOI: https://doi.org/10.1186/s41205-017-0023-2
  • [47] D. Fico, D. Rizzo, R. Casciaro, C.E. Corcione, A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials, Polymers 14/3 (2022) 465. DOI: https://doi.org/10.3390/polym14030465
  • [48] J.H. Porter, T.M. Cain, S.L. Fox, P.S. Harvey, Influence of infill properties on flexural rigidity of 3D-printed structural members, Virtual and Physical Prototyping 14/2 (2019) 148-159. DOI: https://doi.org/10.1080/17452759.2018.1537064
  • [49] M.S. Islam, P. Prabhakar, Interlaminar strengthening of multidirectional laminates using polymer additive manufacturing, Materials and Design 133 (2017) 332-339. DOI: https://doi.org/10.1016/j.matdes.2017.07.038
  • [50] N. Aliheidari, J. Christ, R. Tripuraneni, S. Nadimpalli, A. Ameli, Interlayer adhesion and fracture resistance of polymers printed through melt extrusion additive manufacturing process, Materials and Design 156 (2018) 351-361. DOI: https://doi.org/10.1016/j.matdes.2018.07.001
  • [51] J. Yin, C. Lu, J. Fu, Y. Huang, Y. Zheng, Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion, Materials and Design 150 (2018) 104-112. DOI: https://doi.org/10.1016/j.matdes.2018.04.029
  • [52] A. Garg, A. Bhattacharya, A. Batish, On Surface Finish and Dimensional Accuracy of FDM Parts after Cold Vapor Treatment, Materials and Manufacturing Processes 31/4 (2016) 522-529. DOI: https://doi.org/10.1080/10426914.2015.1070425
  • [53] M. Maciążek, The best ways to glue 3D prints (in Polish). Available from: https://3d.edu.pl/najlepsze-sposoby-na-klejenie-wydrukow-3d/ (Access in: 25.07.2022)
  • [54] J. Yang, W. Li, B. Mu, H. Xu, X. Hou, Y. Yang, Hierarchical crystallization strategy adaptive to 3-dimentional printing of polylactide matrix for complete stereo-complexation, International Journal of Biological Macromolecules 193/A (2021) 247-257. DOI: https://doi.org/10.1016/j.ijbiomac.2021.10.139
  • [55] M. Ribeiro, O. Sousa Carneiro, A. Ferreira da Silva, Interface geometries in 3D multi- material prints by fused filament fabrication, Rapid Prototyping Journal 25/1 (2019) 38-46. DOI: https://doi.org/10.1108/RPJ-05-2017-0107
  • [56] E. Brancewicz-Steinmetz, J. Sawicki, P. Byczkowska, The Influence of 3D Printing Parameters on Adhesion between Polylactic Acid (PLA) and Thermoplastic Polyurethane (TPU), Materials 14/21 (2021) 6464. DOI: https://doi.org/10.3390/ma14216464
  • [57] M.R. Khosravani, F. Berto, M.R. Ayatollahi, T. Reinicke, Characterization of 3D-printed PLA parts with different raster orientations and printing speeds, Scientific Reports 12/1 (2022) 1016. DOI: https://doi.org/10.1038/s41598-022-05005-4
  • [58] N. Vidakis, M. Petousis, E. Velidakis, M. Liebscher, V. Mechtcherine, L. Tzounis, On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA, ABS, PETG, PA6, and PP Thermoplastic Polymers, Polymers 12/12 (2020) 2924. DOI: https://doi.org/10.3390/polym12122924
  • [59] G. Bielęda, G. Zwierzchowski, K. Rosłan, A. Adamus, J. Malicki, Dosimetric assessment of the impact of low-cost materials used in stereolithography in high-dose-rate brachytherapy, Journal of Contemporary Brachytherapy 13/2 (2021) 188-194. DOI: https://doi.org/10.5114/jcb.2021.105287
  • [60] P. Kasprzyk, J. Datta, New plant-derived monomers in the synthesis of thermoplastic polyurethane elastomers Elastomery - Elastomers 22/3 (2018) 200-213.
  • [61] M. Szeląg, Flexible Filaments III: TPU (in Polish). Available from: https://zadar.pl/tpu-czyli-o-filamentach-elastycznych-rozprawy-cz-iii (Access in: 05.05.2022).
  • [62] E. Brancewicz-Steinmetz, J. Sawicki, Bonding and Strengthening the PLA Biopolymer in Multi-Material Additive Manufacturing, Materials 15/16 (2022) 5563. DOI: https://doi.org/10.3390/ma15165563
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd2788b9-6882-47cd-8c5f-5a8b73e5c4ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.