PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent system for the two-phase flows diagnosis and control on the basis of raw 3D ECT data

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Inteligentny system diagnostyki i sterowania przepływami dwufazowymi na podstawie pomiarów 3D ECT
Języki publikacji
EN
Abstrakty
EN
In this paper the new intelligent system for two-phase flows diagnosis and control is presented. The authors developed a fuzzy inference system for two phase flows recognition based on the raw 3D ECT data statistical analysis and fuzzy classification which identify the flow structure in real-time mode. The non-invasive three-dimensional monitoring is possible to conduct even in non-transparent and non-accessible parts of the pipeline. Presented system is also equipped with the two phase gas-liquid flows installation control module based on fuzzy inference which includes the feedback information from the recognition module. The intelligent control module working in a feed-back loop keep the sets of required flow regime. Presented in this paper fuzzy algorithms allow to recognize the two phase processes similar to the human expert and to control the process in the same, very intuitively way. Using of the artificial intelligence in the industrial applications allows to avoid any random errors as well as breakdowns and human mistakes suffer from lack of objectivity. An additional feature of the system is a universal multi-touched monitoring-control panel which is an alternative for commercial solution and gives the opportunity to build user own virtual model of the flow rig to efficiently monitor and control the process.
PL
W artykule zaprezentowany został inteligentny system diagnostyki i sterowania przepływami dwufazowymi gaz-ciecz. Autorzy opracowali rozmyty system wnioskowania oparty o statystyczną analizę i klasyfikację rozmytą surowych danych pomiarowych 3D ECT realizujący w czasie rzeczywistym identyfikację struktury przepływu oraz wyznaczanie objętościowego udziału faz. Nieinwazyjny trójwymiarowy monitoring przepływu możliwy jest w nieprzezroczystych i trudno dostępnych fragmentach rurociągów w czasie rzeczywistym. Prezentowany system wyposażony jest również w moduł sterowania instalacją w oparciu o wnioskowanie rozmyte, któremu na wejście podawane są informacje zwrotne od modułu rozpoznawania. Inteligentny regulator rozmyty pracujący w pętli sprzężenia zwrotnego utrzymuje żądane nastawy parametrów przepływu w oparciu o zadany reżim przepływu. Przedstawione w niniejszym opracowaniu algorytmy rozmyte umożliwiają identyfikację procesów dwu-fazowych w sposób analogiczny do tego, jak to robią specjaliści oraz jednocześnie pozwalają kontrolować proces w ten sam bardzo intuicyjny sposób. Zastosowanie sztucznej inteligencji w aplikacjach przemysłowych pozwala uniknąć przypadkowych ludzkich błędów podatnych na brak obiektywizmu, a także zapobiegać awarii. Cechą dodatkową systemu jest uniwersalny dotykowy panel monitorująco-sterujący stanowiący alternatywę dla drogich komercyjnych rozwiązań umożliwiający budowanie wirtualnego modelu instalacji, aby w szybki i skuteczny sposób móc ją monitorować i nią sterować.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Institute of Applied Computer Science
autor
  • Lodz University of Technology, Institute of Applied Computer Science
autor
  • Lodz University of Technology, Institute of Applied Computer Science
  • Lodz University of Technology, Institute of Applied Computer Science
autor
  • Lodz University of Technology, Institute of Applied Computer Science
autor
  • Lodz University of Technology, Institute of Applied Computer Science
Bibliografia
  • [1] Banasiak R, Wajman R, Sankowski D., Soleimani M.: Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model Prog. Electromagn. Res., 100/2010, 219–234.
  • [2] Bellman R.E., Zadeh L.A.: Decision-Making in a Fuzzy Environment Manage. Science, 17B/1970, 141–164.
  • [3] Brauner N., Maron D.M.: Analysis of stratified/nonstratified transitional boundaries in horizontal gas—liquid flows Chem. Eng. Sci., 46/1991, 1849–1859.
  • [4] Chhabra R.P., Richardson J.F.: Encyclopedia of Fluid Mechanics ed. N.P. Cheremisinoff (Houston: Gulf), 1986.
  • [5] Dziubinski M., Fidos H., Sosno M.: The flow pattern map of a two-phase nonNewtonian liquid-gas flow in the vertical pipe. Int. J. Multiph. Flow, 30/2004, 551–563.
  • [6] Fiderek P., Wajman R., Kucharski J.: Fuzzy clustering based algorithm for determination of the two-phase gas-liquid flows similarity level. Przegląd Elektrotechniczny, 2/2014, 52–55.
  • [7] Grudzien K., Chaniecki Z., Romanowski A., Niedostatkiewicz M., Sankowski D.: ECT image analysis methods for shear zone measurements during silo discharging process. Chinese J. Chem. Eng., 20/2012, 337–345.
  • [8] Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D.: Description of the silo flow and bulk solid pulsation detection using ECT Flow. Meas. Instrum., 21/2010, 198–206.
  • [9] Hewitt G.F., Roberts D.N.: Studies of two-phase flow patterns by simultaneous x-ray and flash photography (Berkshire: Atomic Energy Research Establishment, Harwell (England)), 1969.
  • [10] Ji H.J.H., Huang Z.H.Z., Wang B.W.B., Li H.L.H.: Monitoring system of gasliquid two-phase flow Proc. 21st IEEE Instrum. Meas. Technol. Conf. (IEEE Cat. No.04CH37510) 3/2004, 2298–2301.
  • [11] Johnson R.W.: Handbook of Fluid Dynamics ed R W Johnson (CRC Press LLC), 1998.
  • [12] Li H.L.H., Zhou Z.Z.Z., Hu C.H.C.: Measurement and evaluation of two-phase flow parameters. IEEE Trans. Instrum. Meas. 41/1992, 298–303.
  • [13] Marashdeh Q., Wang F., Fan L.S., Warsito W.: Velocity measurement of multiphase flows based on electrical capacitance volume tomography. Proceedings of IEEE Sensors 2007, 1017–1019.
  • [14] Matía F., Marichal G.N., Jiménez E.: Fuzzy Modeling and Control: Theory and Applications ed F Matía, G N Marichal and E Jiménez (Atlantis Press), 2014.
  • [15] Mitsuishi T.: Continuity of approximate reasoning using center of sums defuzzification method MIPRO, 2012 Proceedings of the 35th International Convention, 2012, 991–994.
  • [16] Nicklin D., Wilkes J., Davidson J.: Two-phase flow in vertical tubes. Trans. Inst. Chem. Eng. 40/1962, 61–68.
  • [17] Oshinowo T., Charles M.E.: Vertical two-phase flow part I. Flow pattern correlations Can. J. Chem. Eng. 52/1974, 25–35.
  • [18] Pląskowski A., Beck M.S., Thorn R.D.T.: Imaging Industrial Flows – Applications of Electrical Process Tomography (Bristol: IOP Publishing), 1995.
  • [19] Romanowski A., Grudzien K., Williams R.A.: Analysis and Interpretation of Hopper Flow Behaviour Using Electrical Capacitance Tomography Part. Part. Syst. Charact. 23/2006, 297–305.
  • [20] Rondeau L., Ruelas R., Levrat L., Lamotte M.: A defuzzification method respecting the fuzzification Fuzzy Sets Syst. 86/1997, 311–320.
  • [21] Ross T.J.: Fuzzy Logic with Engineering Applications, 3rd edition (UK: Wiley), 2010.
  • [22] Soleimani M., Wang H., Li Y.Y.W.: A Comparative Study Of 3D Electrical Capacitance Tomography. Int. J. Inf. Syst. Sci. 3/2007, 283–291.
  • [23] Taitel Y., Dukler A.E.: A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J. 22/1976, 47–55.
  • [24] Taitel Y., Bornea D., Dukler A.E.: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 26/1980, 345–354.
  • [25] Wajman R, Banasiak R, Mazurkiewicz L, Dyakowski T., Sankowski D.: Spatial imaging with 3D capacitance measurements Meas. Sci. Technol. 17/2006, 2113.
  • [26] Wang F., Marashdeh Q., Fan L.S., Warsito W.: Electrical capacitance volume tomography: Design and applications Sensors 10/2010, 1890–1917.
  • [27] Xie C.G., Huang S.M., Hoyle B.S., Thorn R., Lenn C., Snowden D., Beck M.S.: Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. Circuits, Devices Syst. IEE Proc. G 139/1992, 89–98.
  • [28] Xie D., Huang Z., Ji H., Li H.: An Online Flow Pattern Identification System for Gas-Oil Two-Phase Flow Using Electrical Capacitance Tomography. Instrum. Meas. IEEE Trans. 55/2006, 1833–1838.
  • [29] Zadeh L.A.: Fuzzy sets. Inf. Control 8/1965, 338–353.
  • [30] Zadeh L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90/1997, 111–127.
  • [31] Zhang H.X.W., L F.: Identification of two-phase flow regimes based on support vector machine and electrical capacitance tomography. Meas. Sci. Technol. 20/2009, 114007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd24eaa6-4d5c-478e-8cea-97207548a4a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.