PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of solutions of the 1D fractional Cattaneo heat transfer equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a solution of the single-phase lag heat conduction problem is presented. The research concerns the generalized 1D Cattaneo equation in a whole-space domain, where a second order time derivative is replaced by the fractional Caputo derivative. The Fourier-Laplace transform technique is used to determine a solution of the considered problem. The numerical inversion of the Laplace transforms is applied. The effect of the order of the fractional derivative on the temperature distribution is investigated.
Rocznik
Strony
87--98
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology Częstochowa, Poland
  • Department of Computer Science, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Özişik, M.N. (1993). Heat Conduction. Wiley.
  • [2] Podlubny, I. (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Vol. 198). Elsevier.
  • [3] Ciesielski, M., & Blaszczyk, T. (2018). An exact solution of the second order differential equation with the fractional/generalised boundary conditions. Advances in Mathematical Physics, 7283518.
  • [4] Ciesielski, M., Mochnacki B., & Majchrzak E. (2020). Integro-differential form of the first-order dual phase lag heat transfer equation and its numerical solution using the Control Volume Method, Archives of Mechanics, 72, 5, 415-444.
  • [5] Ciesielski, M., & Siedlecka, U. (2021). Fractional dual-phase lag equation – fundamental solution of the Cauchy problem. Symmetry, 13(8), 1333.
  • [6] Diethelm, K. (2010). The Analysis of Fractional Differential Equations. Springer-Verlag.
  • [7] Kukla, S., & Siedlecka, U. (2015). Laplace transform solution of the problem of time-fractional heat conduction in a two-layered slab. Journal of Applied Mathematics and Computational Mechanics, 14(4), 105-113.
  • [8] Siedlecka, U. (2019). Heat conduction in a finite medium using the fractional single-phase-lag model. Bulletin of the Polish Academy of Sciences: Technical Sciences, 67, 402-407.
  • [9] Povstenko, Y. (2013). Fractional heat conduction in an infinite medium with a spherical inclusion. Entropy 15, 4122-4133.
  • [10] Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., & Skovranek, T. (2013). Modelling heat transfer in heterogeneous media using fractional calculus. Philosophical Transactions of the Royal Society A, 371, 146.
  • [11] Odibat, Z.M., & Shawagfeh, N.T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computations, 186, 286-293.
  • [12] Kexue, L., & Jigen, P. (2011). Laplace transform and fractional differential equations. Applied Mathematics Letters, 24, 2019-2023.
  • [13] Abate, J., & Valkó, P.P. (2004). Multi-precision Laplace transform inversion. International Journal for Numerical Methods in Engineering, 60, 979-993.
  • [14] Polyanin, A.D., & Chernoutsan, A.I. (2011). A Concise Handbook of Mathematics, Physics, and Engineering Sciences, CRC Press.
  • [15] De Hoog, F.R., Knight, J., & Stokes, A.N. (1982). An improved method for numerical inversion of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357-366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd23131c-6bd4-4bc9-a796-00970ebef317
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.