Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we delve into the fusion of machine learning (ML) and Internet of Things (IoT) technologies to redefine environmental radiation monitoring and security. By harnessing these advanced technologies, this work presents a novel approach to radiation safety, emphasizing enhanced real-time monitoring, precision in detection, and improved regulatory compliance. Through an in-depth analysis of various case studies and methodologies, it uncovers the potential of ML and IoT in overcoming traditional challenges, such as data accuracy and privacy concerns. The discussion extends to the implications of these technologies on environmental safety, offering a forward-looking perspective on the evolution of radiation monitoring systems. This article not only addresses the technical and ethical challenges but also highlights the transformative impact of ML and IoT integration on public health and environmental protection, paving the way for innovative solutions in the domain of environmental safety and security.
Rocznik
Tom
Strony
34--45
Opis fizyczny
Bibliogr. 96 poz., rys., tab.
Twórcy
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
autor
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
- University of Szczecin, Institute of Marine and Environmental Sciences 13 Wąska St., 71-415 Szczecin, Poland
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
autor
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
autor
- Maritime University of Szczecin 1-2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
- Polish Society of Bioinformatics and Data Science BIODATA 4c Popiełuszki St., 71-214 Szczecin, Poland
Bibliografia
- 1. Abimannan, S., El-Alfy, E.-S.M., Hussain, S., Chang, Y.- S., Shukla, S., Satheesh, D. & Breslin, J.G. (2023) Towards federated learning and multi-access edge computing for air quality monitoring: literature review and assessment. Sustainability 15, 13951, doi: 10.3390/su151813951.
- 2. AbuAlRoos, N.J., Baharul Amin, N.A. & Zainon, R. (2019) Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry 165, 108439, doi: 10.1016/j.radphyschem.2019.108439.
- 3. Afzal, M., Aoun, M., ur Rehman, S., Kaleem, M.A., Jamil, M. & Taqi, M. (2023) IoT enabled smart ultrasonic surveillance system using IR sensor. Journal of Computing & Biomedical Informatics 5 (1), pp. 391–402, doi: 10.56979/501/2023.
- 4. Ahansal, Y., Bouziani, M., Yaagoubi, R., Sebari, I., Sebari, K. & Kenny, L. (2022) Towards smart irrigation: A literature review on the use of geospatial technologies and machine learning in the management of water resources in arboriculture. Agronomy 12, 297, doi: 10.3390/agronomy12020297.
- 5. Ahmad, M.I., Ab. Rahim, M.H., Nordin, R., Mohamed, F., Abu-Samah, A. & Abdullah, N.F. (2021) Ionizing radiation monitoring technology at the verge of Internet of Things. Sensors 21, 7629, doi: 10.3390/s21227629.
- 6. Ahmed, R.A., Hemdan, E.E., El‐Shafai, W., Ahmed, Z.A., El‐Rabaie, E.M. & Abd El‐Samie, F.E. (2022) Climate‐ smart agriculture using intelligent techniques, blockchain and Internet of Things: Concepts, challenges, and opportunities. Transactions on Emerging Telecommunications Technologies 33, doi: 10.1002/ett.4607.
- 7. Alam, A., Chowdhury, A.M. & Akter, F. (2019) Design and development of Arduino based radiation survey meter with two scintillation detectors. International Research Journal of Engineering and Technology 06 (10), pp. 608– 616.
- 8. Alrammah, I.A. & AlShareef, M.R. (2023) A digitalized framework for responding to radiological accidents in a public major event. Journal of Radiation Research and Applied Sciences 16 (2), 100536, doi: 10.1016/j.jrras.2023.100536.
- 9. Al-Turjman, F. & Lemayian, J.P. (2020) Intelligence, security, and vehicular sensor networks in Internet of Things (IoT)-enabled smart-cities: An overview. Computers & Electrical Engineering 87, 106776, doi: 10.1016/j.compeleceng.2020.106776.
- 10. Arsanjani, R., Xu, Y., Dey, D., Vahistha, V., Shalev, A., Nakanishi, R., Hayes, S., Fish, M., Berman, D., Germano, G., et al. (2013) Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. Journal of Nuclear Cardiology 20, pp. 553–562, doi: 10.1007/s12350-013-9706-2.
- 11. Ayodeji, A., Amidu, M.A., Olatubosun, S.A., Addad, Y. & Ahmed, H. (2022) Deep learning for safety assessment of nuclear power reactors: Reliability, explainability, and research opportunities. Progress in Nuclear Energy 151, 104339, doi: 10.1016/j.pnucene.2022.104339.
- 12. Bedi, P., Goyal, S.B., Islam, S.M.N., Liu, J. & Budati, A.K. (2022) Performance analysis of machine learning and deep learning algorithms for smart cities: The present state and future directions. In: Cognitive Computing Models in Communication Systems pp. 15–45, Wiley, doi: 10.1002/9781119865605.ch2.
- 13. Bennardo, L., Passante, M., Cameli, N., Cristaudo, A., Patruno, C., Nisticò, S.P. & Silvestri, M. (2021) Skin manifestations after ionizing radiation exposure: A systematic review. Bioengineering 8, 153, doi: 10.3390/ bioengineering8110153.
- 14. Bharadwaj, H.K., Agarwal, A., Chamola, V., Lakkaniga, N.R., Hassija, V., Guizani, M. & Sikdar, B. (2021) A review on the role of machine learning in enabling IoT based healthcare applications. IEEE Access 9, pp. 38859– 38890, doi: 10.1109/ACCESS.2021.3059858.
- 15. Bharati, S. & Podder, P. (2022) Machine and deep learning for IoT security and privacy: Applications, challenges, and future directions. Security and Communication Networks 2022, pp. 1–41, doi: 10.1155/2022/8951961.
- 16. Bodin, Ö., Alexander, S.M., Baggio, J., Barnes, M.L., Berardo, R., Cumming, G.S., Dee, L.E., Fischer, A.P., Fischer, M., Mancilla Garcia, M., et al. (2019) Improving network approaches to the study of complex social–ecological interdependencies. Nature Sustainability 2, pp. 551–559, doi: 10.1038/s41893-019-0308-0.
- 17. Boukabache, H., Pangallo, M., Ducos, G., Cardines, N., Bellotta, A., Toner, C., Perrin, D. & Forkel-Wirth, D. (2017) Towards a novel modular architecture for CERN radiation monitoring. Radiation Protection Dosimetry 173 (1‒3), pp. 240–244, doi: 10.1093/rpd/ncw308.
- 18. Brouwer, C.L., Dinkla, A.M., Vandewinckele, L., Crijns, W., Claessens, M., Verellen, D. & van Elmpt, W. (2020) Machine learning applications in radiation oncology: Current use and needs to support clinical implementation. Physics and Imaging in Radiation Oncology 16, pp. 144– 148, doi: 10.1016/j.phro.2020.11.002.
- 19. Burtniak, V., Zabulonov, Y., Stokolos, M., Bulavin, L. & Krasnoholovets, V. (2018) Application of a territorial remote radiation monitoring system at the Chornobyl nuclear accident site. Journal of Applied Remote Sensing 12 (4), 1, doi: 10.1117/1.JRS.12.046007.
- 20. Bushberg, J.T., Chou, C.K., Foster, K.R., Kavet, R., Maxson, D.P., Tell, R.A. & Ziskin, M.C. (2020) IEEE Committee on Man and Radiation—COMAR technical information statement: Health and safety issues concerning exposure of the general public to electromagnetic energy from 5G wireless communications networks. Health Physics 119, pp. 236–246, doi: 10.1097/HP.0000000000001301.
- 21. Ceesay-Seitz, K., Boukabache, H., Perrin, D. & Leveneur, M. (2022) RomLibEmu: Network interface stress tests for the CERN radiation monitoring electronics (CROME). Journals of Accelerator Conferences Website (JACoW), pp. 581–585, doi: 10.18429/JACoW-ICALEPCS2021- WEBR01.
- 22. Chamunyonga, C., Edwards, C., Caldwell, P., Rutledge, P. & Burbery, J. (2020) The impact of artificial intelligence and machine learning in radiation therapy: Considerations for future curriculum enhancement. Journal of Medical Imaging and Radiation Sciences 51 (2), pp. 214– 220, doi: 10.1016/j.jmir.2020.01.008.
- 23. Currie, G.M. & Rohren, E.M. (2023) Radiation dosimetry, artificial intelligence and digital twins: Old dog, new tricks. Seminars in Nuclear Medicine 53 (3), pp. 457–466, doi: 10.1053/j.semnuclmed.2022.10.007.
- 24. Elshenawy, L.M., Halawa, M.A., Mahmoud, T.A., Awad, H.A. & Abdo, M.I. (2021) Unsupervised machine learning techniques for fault detection and diagnosis in nuclear power plants. Progress in Nuclear Energy 142, 103990, doi: 10.1016/j.pnucene.2021.103990.
- 25. French, J. & Chen, L. (2019) Preparing for artificial intelligence: Systems-level implications for the medical imaging and radiation therapy professions. Journal of Medical Imaging and Radiation Sciences 50, S20–S23, doi:10.1016/j. jmir.2019.09.002.
- 26. Frush, D., Denham, C.R., Goske, M.J., Brink, J.A., Morin, R.L., Mills, T.T., Butler, P.F., McCollough, C. & Miller, D.L. (2013) Radiation protection and dose monitoring in medical imaging. Journal of Patient Safety 9 (4), pp. 232–238, doi: 10.1097/PTS.0b013e3182a8c2c4.
- 27. Fukuoka, K., Awai, S. & Markon, S. (2015) A mobile cloud-based radiation monitoring system for citizens. In Proceedings of the 2015 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Cebu, Philippines, pp. 1–5, doi: 10.1109/R10-HTC.2015.7391857.
- 28. Galib, S.M., Bhowmik, P.K., Avachat, A.V. & Lee, H.K. (2021) A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra. Nuclear Engineering and Technology 53, pp. 4072–4079, doi: 10.1016/j.net.2021.06.020.
- 29. Gazis, A. & Katsiri, E. (2021) Smart home IoT sensors: Principles and applications—A review of low-cost and low-power solutions. International Journal on Engineering Technologies and Informatics 2 (1), pp. 19–23, doi: 10.51626/ijeti.2021.02.00007.
- 30. Gomez-Fernandez, M., Higley, K., Tokuhiro, A., Welter, K., Wong, W.-K. & Yang, H. (2020) Status of research and development of learning-based approaches in nuclear science and engineering: A review. Nuclear Engineering and Design 359, 110479, doi: 10.1016/j. nucengdes.2019.110479.
- 31. Gomez-Fernandez, M., Wong, W.-K., Tokuhiro, A., Welter, K., Alhawsawi, A.M., Yang, H. & Higley, K. (2021) Isotope identification using deep learning: An explanation. Nuclear Instruments and Methods in Physics Research A 988, 164925, doi: 10.1016/j.nima.2020.164925.
- 32. Gudkov, S.V., Grinberg, M.A., Sukhov, V. & Vodeneev, V. (2019) Effect of ionizing radiation on physiological and molecular processes in plants. Journal of Environmental Radioactivity 202, pp. 8–24, doi: 10.1016/j.jenvrad.2019.02.001.
- 33. Hernández-Gutiérrez, C.A., Delgado-del-Carpio, M., Zebadúa-Chavarría, L.A., Hernández-de-León, H.R., Escobar-Gómez, E.N. & Quevedo-López, M. (2023) IoT-enabled system for detection, monitoring, and tracking of nuclear materials. Electronics (Basel) 12, 3042, doi: 10.3390/electronics12143042.
- 34. Hino, M., Benami, E. & Brooks, N. (2018) Machine learning for environmental monitoring. Nature Sustainability 1, pp. 583–588, doi: 10.1038/s41893-018-0142-9.
- 35. Holovatyy, A., Teslyuk, V., Kryvinska, N. & Kazarian, A. (2020) Development of microcontroller-based system for background radiation monitoring. Sensors 20, 7322, doi: 10.3390/s20247322.
- 36. Hossain, M.M., Rahman, M.A., Chaki, S., Ahmed, H., Haque, A., Tamanna, I., Lima, S., Most, J.F. & Rahman, M.S. (2023) Smart-agri: A smart agricultural management with IoT-ML-blockchain integrated framework. International Journal of Advanced Computer Science and Applications 14 (7), pp. 985–996, doi: 10.14569/ IJACSA.2023.01407107.
- 37. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M. & Elharfi, A. (2021) Polymer composite materials: A comprehensive review. Composite Structures 262, 113640, doi: 10.1016/j.compstruct.2021.113640.
- 38. Indhumathi, S., Aghalya, S., Smitha, J.A. & Presitha Aarthi, M. (2023) IoT-enabled weather monitoring and rainfall prediction using machine learning algorithm. In Proceedings of the 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, pp. 1491–1495, doi: 10.1109/ ICAISS58487.2023.10250652.
- 39. Ishigaki, Y., Matsumoto, Y., Ichimiya, R. & Tanaka, K. (2013) Development of mobile radiation monitoring system utilizing smartphone and its field tests in Fukushima. IEEE Sensors Journal 13 (10), pp. 3520–3526, doi: 10.1109/ JSEN.2013.2272734.
- 40. Jalal, S., Parker, W., Ferguson, D. & Nicolaou, S. (2021) Exploring the role of artificial intelligence in an emergency and trauma radiology department. Canadian Association of Radiologists Journal 72, pp. 167–174, doi: 10.1177/0846537120918338.
- 41. Jarrett, D., Stride, E., Vallis, K. & Gooding, M.J. (2019) Applications and limitations of machine learning in radiation oncology. British Journal of Radiology 92, 20190001, doi: 10.1259/bjr.20190001.
- 42. Kalathil, D., Vaishnav, K., Tarade, A., Talele, K & Bansode, M. (2021) Microcontroller based substation disaster monitoring system. In Proceedings of the 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, November 11‒13; pp. 1774–1778, doi: 10.1109/I-SMAC52330.2021.9640909.
- 43. Kim, D., Jeon, P.-H., Lee, C.-L. & Chung, M.-A. (2023) Effect of tube voltage and radiation dose on image quality in pediatric abdominal CT using deep learning reconstruction: A phantom study. Symmetry (Basel) 15, 501, doi: 10.3390/sym15020501.
- 44. Klement, A.W. (2019) Handbook of Environmental Radiation. CRC Press.
- 45. Li, B., Wang, E., Li, Z., Cao, X., Liu, X. & Zhang, M. (2023) Automatic recognition of effective and interference signals based on machine learning: A case study of acoustic emission and electromagnetic radiation. International Journal of Rock Mechanics and Mining Sciences 170, 105505, doi: 10.1016/j.ijrmms.2023.105505.
- 46. Li, J., Li, B., Shen, N., Chen, L., Guo, Q., Chen, L., He, L., Dai, X., Chai, Z. & Wang, S. (2021) Task-specific tailored cationic polymeric network with high base-resistance for unprecedented 99TcO4 – cleanup from alkaline nuclear waste. ACS Central Science 7 (8), pp. 1441–1450, doi: 10.1021/ acscentsci.1c00847.
- 47. Lin, T.-H. & Liaw, D.-C. (2015) Development of an intelligent disaster information-integrated platform for radiation monitoring. Natural Hazards 76, pp. 1711–1725, doi: 10.1007/s11069-014-1565-x.
- 48. Mahatab, T.A., Muradi, M.H., Ahmed, S. & Kafi, A. (2018) Design and analysis of IoT based ionizing radiation monitoring system. In Proceedings of the 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), pp. 432–436.
- 49. Malik, I., Bhardwaj, A., Bhardwaj, H. & Sakalle, A. (2023) IoT-enabled smart homes: Architecture, challenges, and issues. In: D.U. Mishra & S. Sharma (Eds) Revolutionizing Industrial Automation Through the Convergence of Artificial Intelligence and the Internet of Things (pp. 160–176), doi: 10.4018/978-1-6684-4991-2.ch008.
- 50. Manzano, L.G., Boukabache, H., Danzeca, S., Heracleous, N., Murtas, F., Perrin, D., Pirc, V., Alfaro, A.R., Zimmaro, A. & Silari, M. (2021) An IoT LoRaWAN network for environmental radiation monitoring. IEEE Transactions on Instrumentation and Measurement 70, pp. 1–12, doi: 10.1109/TIM.2021.3089776.
- 51. Marques, L., Vale, A. & Vaz, P. (2021) State-of-the-art mobile radiation detection systems for different scenarios. Sensors 21, 1051, doi: 10.3390/s21041051.
- 52. Meades, R., Page, J., Ross, J.C. & McCool, D. (2023) Machine learning to predict environmental dose rates from a radionuclide therapy service—a proof of concept study. Journal of Radiological Protection 43, 031501, doi: 10.1088/1361-6498/ace1fa.
- 53. Morgan, D., Pilania, G., Couet, A., Uberuaga, B.P., Sun, C. & Li, J. (2022) Machine learning in nuclear materials research. Current Opinion in Solid State and Materials Science 26 (2), 100975, doi: 10.1016/j.cossms.2021.100975.
- 54. Morton, L.M., Karyadi, D.M., Stewart, C., Bogdanova, T.I., Dawson, E.T., Steinberg, M.K., Dai, J., Hartley, S.W., Schonfeld, S.J., Sampson, J.N., et al. (2021) Radiationrelated genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science (1979) 372, doi: 10.1126/ science.abg2538.
- 55. Mothersill, C.E., Oughton, D.H., Schofield, P.N., Abend, M., Adam-Guillermin, C., Ariyoshi, K., Beresford, N.A., Bonisoli-Alquati, A., Cohen, J., Dubrova, Y., et al. (2022) From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. International Journal of Radiation Biology 98 (6), pp. 1185–1200, doi:10.1080/09553002.2020.1793022.
- 56. Muhtadan, M., Abimanyu, A., Akmalia, R. & Salam, M. (2020) Design of IoT-based radiation monitor area for nuclear and radiological emergency preparedness system in Yogyakarta nuclear area. Journal of Physics Conference Series 1428 (1), 012050, doi: 10.1088/1742-6596/1428/1/012050.
- 57. Nabipour Chakoli, A., Massey, C. & Weibert, H. (2021) Improvement of radiation safety using personal radiation dosimeter plug in smartphone. In: International Conference on Radiation Safety: Improving Radiation Protection in Practice, Extended Abstracts, 9‒20 November 2020, pp. 347‒348.
- 58. Naoum, G.E., Ho, A.Y., Shui, A., Salama, L., Goldberg, S., Arafat, W., Winograd, J., Colwell, A., Smith, B.L. & Taghian, A.G. (2022) Risk of developing breast reconstruction complications: A machine-learning nomogram for individualized risk estimation with and without postmastectomy radiation therapy. Plastic and Reconstructive Surgery 149 (1), pp. 1e–12e, doi: 10.1097/PRS.0000000000008635.
- 59. Navami, D., Darshan, G.P., Basavaraj, R.B., Sharma, S.C., Kavyashree, D., Venkatachalaiah, K.N. & Nagabhushana, H. (2020) Shape controllable ultrasound assisted fabrication of CaZrO3:Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications. Journal of Photochemistry and Photobiology A: Chemistry 389, 112248, doi: 10.1016/j.jphotochem.2019.112248.
- 60. Nguyen, D., Long, T., Jia, X., Lu, W., Gu, X., Iqbal, Z. & Jiang, S. (2019) A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Scientific Reports 9, 1076, doi: 10.1038/s41598-018-37741-x.
- 61. Ohtsuru, A., Tanigawa, K., Kumagai, A., Niwa, O., Takamura, N., Midorikawa, S., Nollet, K., Yamashita, S., Ohto, H., Chhem, R.K., et al. (2015) Nuclear disasters and health: lessons learned, challenges, and proposals. The Lancet 386, pp. 489–497, doi: 10.1016/S0140- 6736(15)60994-1.
- 62. Okafor, N. (2023) Advances and challenges in IoT sensors data handling and processing in environmental monitoring systems. TechRxiv. August 31, doi: 10.36227/ techrxiv.24045951.v1.
- 63. Padoy, N. (2019) Machine and deep learning for workflow recognition during surgery. Minimally Invasive Therapy & Allied Technologies 28, pp. 82–90, doi: 10.1080/13645706.2019.1584116.
- 64. Parthipan, M. & Sek, T.K. (2021) Development of mobile-based robotic control for real-time radiation residue monitoring system. Evolution in Electrical and Electronic Engineering 2, pp. 686–695.
- 65. Pascual, U., Balvanera, P., Anderson, C.B., ChaplinKramer, R., Christie, M., González-Jiménez, D., Martin, A., Raymond, C.M., Termansen, M. & Vatn, A. (2023) Diverse values of nature for sustainability. Nature 620, pp. 813–823, doi: 10.1038/s41586-023-06406-9.
- 66. Plachouris, D., Eleftheriadis, V., Nanos, T., Papathanasiou, N., Sarrut, D., Papadimitroulas, P., Savvidis, G., Vergnaud, L., Salvadori, J., Imperiale, A., et al. (2023) A radiomic‐ and dosiomic‐based machine learning regression model for pretreatment planning in 177Lu‐DOTATATE therapy. Medical Physics 50, pp. 7222–7235, doi: 10.1002/ mp.16746.
- 67. Ramkumar, P.N., Haeberle, H.S., Bloomfield, M.R., Schaffer, J.L., Kamath, A.F., Patterson, B.M. & Krebs, V.E. (2019) Artificial intelligence and arthroplasty at a single institution: Real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. Journal of Arthroplasty 34, pp. 2204– 2209, doi: 10.1016/j.arth.2019.06.018.
- 68. Rani, S., Mishra, R.K., Usman, M., Kataria, A., Kumar, P., Bhambri, P. & Mishra, A.K. (2021) Amalgamation of advanced technologies for sustainable development of smart city environment: A review. IEEE Access 9, pp. 150060– 150087, doi: 10.1109/ACCESS.2021.3125527.
- 69. Rathore, M.M., Shah, S.A., Shukla, D., Bentafat, E. & Bakiras, S. (2021) The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access 9, pp. 32030– 32052, doi: 10.1109/ACCESS.2021.3060863.
- 70. Rosero, D.G., Sanabria, E., Díaz, N.L., Trujillo, C.L., Luna, A. & Andrade, F. (2023) Full-deployed energy management system tested in a microgrid cluster. Applied Energy 334, 120674, doi: 10.1016/j.apenergy.2023.120674.
- 71. Rovera, G., Fariselli, P. & Deandreis, D. (2023) Artificial intelligence and machine learning. In: Radiopharmaceutical Therapy. Springer International Publishing: Cham, pp. 499– 516.
- 72. Sahiner, B., Pezeshk, A., Hadjiiski, L.M., Wang, X., Drukker, K., Cha, K.H., Summers, R.M. & Giger, M.L. (2019) Deep learning in medical imaging and radiation therapy. Medical Physics 46 (1), pp. e1–e36, doi: 10.1002/ mp.13264.
- 73. Saifullah, M., Bajwa, I.S., Ibrahim, M. & Asghar, M. (2022) IoT-enabled intelligent system for the radiation monitoring and warning approach. Mobile Information Systems 2022, pp. 1–12, doi: 10.1155/2022/2769958.
- 74. Saito, K., Mikami, S., Andoh, M., Matsuda, N., Kinase, S., Tsuda, S., Sato, T., Seki, A., Sanada, Y., Wainwright-Murakami, H., et al. (2019) Temporal change in radiological environments on land after the Fukushima Daiichi nuclear power plant accident. Journal of Radiation Protection and Research 44, pp. 128–148, doi: 10.14407/ jrpr.2019.44.4.128.
- 75. Sarkar, S., Vinay, S., Raj, R., Maiti, J. & Mitra, P. (2019) Application of optimized machine learning techniques for prediction of occupational accidents. Computers & Operations Research 106, pp. 210–224, doi: 10.1016/j. cor.2018.02.021.
- 76. Seifert, R., Weber, M., Kocakavuk, E., Rischpler, C. & Kersting, D. (2021) Artificial intelligence and machine learning in nuclear medicine: Future perspectives. Seminars in Nuclear Medicine 51, pp. 170–177, doi: 10.1053/j. semnuclmed.2020.08.003.
- 77. Sharma, C., Behera, R.P., Sakthivel, M., Panigrahi, B.K. & Jayanthi, T. (2021) Characterization of microcontroller under gamma radiation environment. In: Komanapalli, V.L.N., Sivakumaran, N., Hampannavar, S. (Eds) Advances in Automation, Signal Processing, Instrumentation, and Control. i-CASIC 2020. Lecture Notes in Electrical Engineering 700 (pp. 2001–2008). Springer, Singapore, doi: 10.1007/978-981-15-8221-9_185.
- 78. Sharma, M. & Kaur, J. (2019) Disaster management using Internet of Things. In: Kaur, G. & Tomar, P. (Eds), Handbook of Research on Big Data and the IoT (pp. 211–222). IGI Global Scientific Publishing, doi: 10.4018/978-1-5225- 7432-3.ch012.
- 79. Sim, Y., Chung, M.J., Kotter, E., Yune, S., Kim, M., Do, S., Han, K., Kim, H., Yang, S., Lee, D.-J., et al. (2020) Deep convolutional neural network–based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology 2020, 294, pp. 199–209, doi: 10.1148/radiol.2019182465.
- 80. Sindhwani, N., Anand, R., Vashisth, R., Chauhan, S., Talukdar, V. & Dhabliya, D. (2022) Thingspeak-based environmental monitoring system using IoT. In Proceedings of the 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC); IEEE, pp. 675– 680.
- 81. Singh, A.V., Ansari, M.H.D., Rosenkranz, D., Maharjan, R.S., Kriegel, F.L., Gandhi, K., Kanase, A., Singh, R., Laux, P. & Luch, A. (2020) Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Advanced Healthcare Materials 9 (17), 1901862, doi: 10.1002/adhm.201901862.
- 82. Suhariyono, G., Untara, U. & Mellawati, J. (2021) Dose rate of environmental gamma radiation in some locations of West Kalimantan as a site candidate of nuclear power plant. AIP Conference Proceedings 2381 (1), 020087, doi: 10.1063/5.0066764.
- 83. Susila, I.P., Istofa, Kusuma, G., Sukandar & Isnaini, I. (2018) Development of IoT based meteorological and environmental gamma radiation monitoring system. AIP Conference Proceedings 1977 (1), 060004, doi: 10.1063/1.5043016.
- 84. Szumega, J.M., Boukabache, H. & Perrin, D. (2021) Neural network approach for efficient calculation of the current correction value in the femtoampere range for a new generation of ionizing radiation monitors at CERN. Radiation Physics and Chemistry 188, 109539, doi: 10.1016/j.radphyschem.2021.109539.
- 85. Tambasafidy, F.P.E., Ratongasoandrazana, J.B., Andrianiaina, H., Rabesiranana, N. & Rajaobelison, J. (2019) IoT-based environmental and ionizing radiation monitoring system. International Journal of Innovative Research in Science, Engineering and Technology 8 (3), pp. 3457–3464, doi: 10.15680/IJIRSET.2019.0803258.
- 86. Taufiq, A. & Zanuar, S. (2020) Study using Internet of Things to control radiation level. Journal of Physics Conference Series 1436 (1), 012078, doi: 10.1088/1742- 6596/1436/1/012078.
- 87. Tettey, F., Parupelli, S.K. & Desai, S. (2024) A review of biomedical devices: Classification, regulatory guidelines, human factors, software as a medical device, and cybersecurity. Biomedical Materials & Devices 2, pp. 316–341, doi:10.1007/s44174-023-00113-9.
- 88. Ullo, S.L. & Sinha, G.R. (2020) Advances in smart environment monitoring systems using IoT and sensors. Sensors 20, 3113, doi: 10.3390/s20113113.
- 89. Vetter, K. (2020) The nuclear legacy today of Fukushima. Annual Review of Nuclear and Particle Science 70, pp. 257– 292, doi: 10.1146/annurev-nucl-101918-023715.
- 90. Visvikis, D., Lambin, P., Beuschau Mauridsen, K., Hustinx, R., Lassmann, M., Rischpler, C., Shi, K. & Pruim, J. (2022) Application of artificial intelligence in nuclear medicine and molecular imaging: A review of current status and future perspectives for clinical translation. European Journal of Nuclear Medicine and Molecular Imaging 49, pp. 4452–4463, doi: 10.1007/s00259-022-05891-w.
- 91. Weber, W.J., Navrotsky, A., Stefanovsky, S., Vance, E.R. & Vernaz, E. (2009) Materials science of high-level nuclear waste immobilization. MRS Bulletin 34, pp. 46–53, doi: 10.1557/mrs2009.12.
- 92. Widodo, S., Wahyudi, Wiyono, M., Pudjadi, E., Iskandar, D. & Syarbaini, S. (2022) Survey of prospective locations for radionuclide monitoring stations in Indonesia; A preliminary site assessment. AIP Conference Proceedings 2501 (1), p. 020017, doi: 10.1063/5.0095964.
- 93. Wilt, J.K., Yang, C. & Gu, G.X. (2020) Accelerating auxetic metamaterial design with deep learning. Advanced Engineering Materials 22, doi: 10.1002/adem.201901266.
- 94. Wu, L., Chen, T., Ciren, N., Wang, D., Meng, H., Li, M., Zhao, W., Luo, J., Hu, X., Jia, S., et al. (2023) Development of a machine learning forecast model for global horizontal irradiation adapted to Tibet based on visible all-sky imaging. Remote Sens (Basel) 15, 2340, doi: 10.3390/rs15092340.
- 95. Xie, A., Hettiarachchi, C., Maddalena, F., Witkowski, M.E., Makowski, M., Drozdowski, W., Arramel, A., Wee, A.T.S., Springham, S.V., Vuong, P.Q., et al. (2020) Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Communications Materials 1, 37, doi: 10.1038/s43246-020-0038-x.
- 96. Yang, J., Veeraraghavan, H., Armato, S.G., Farahani, K., Kirby, J.S., Kalpathy‐Kramer, J., van Elmpt, W., Dekker, A., Han, X., Feng, X., et al. (2017) Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Medical Physics 45, pp. 4568–4581, doi: 10.1002/mp.13141.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd21fc60-21b1-495d-be78-f8dbcdc3f689
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.