Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper were conducted virtual tests to assess the impact of geometry changes on the response of metallic hexagonal honeycomb structures to applied loadings. The lateral compressive stress state was taken into consideration. The material properties used to build numerical models were assessed in laboratory tests of aluminium alloy 7075. The modelling at meso-scale level allow to comprehensive study of honeycomb internal structure. The changes of honeycomb geometry elements such as: fillets radius of the cell edges in the vicinity of hexagonal vertexes, wall thickness were considered. The computations were conducted by using finite element method with application of the ABAQUS finite element method environment. Elaborated numerical models allowed to demonstrate sensitivity of honeycomb structures damage process response to geometry element changes. They are a proper tools to perform optimization of the honeycomb structures. They will be also helpful in designing process of modern constructions build up of the considered composite constituents in various branches of industry. Moreover, the obtained results can be used as a guide for engineers. Conducted virtual tests lead to conclusion that simplification of the models of internal honeycomb structure which have become commonplace among both engineers and scientist can lead to inaccurate results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
953--961
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Politechnika Lubelska, 20-618 Lublin, 40 Nadbystrzycka Str., Poland
autor
- Politechnika Lubelska, 20-618 Lublin, 40 Nadbystrzycka Str., Poland
Bibliografia
- [1] V. Burlayenko, T. Sadowski, Transient dynamic response of debonded sandwich plates predicted with the finite element, Meccanica 49, 2617-2633 (2014).
- [2] V. Burlayenko, T. Sadowski, Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modeling, Composite Structures 108, 354-366 (2014).
- [3] V. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact, Comput. Mat. Sci. 52, 212-216 (2012).
- [4] V. Burlayenko, T. Sadowski, Simulations of Post-impact Skin/core Debond Growth in Sandwich Plates Under Impulsive Loading, Journal of Applied Nonlinear Dynamics 3, 369-379 (2014).
- [5] T. Sadowski, J. Bęc, Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling – Static and dynamic response, Computational Material Science 50, 1269-1275 (2011).
- [6] G. Sun, H. Jiang, J. Fang, G. Li, Q. Li, Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact, Materials and Design 110, 705-719 (2016).
- [7] S. Li, X. Li, Z. Wanga, G. Wu, G. Lu, L. Zhao, Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading, Composites: Part A 80, 1-12 (2016).
- [8] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam, Comp. Mater. Sci. 45, 658-662 (2009).
- [9] V. Burlayenko, T. Sadowski, Finite element nonlinear dynamic analysis of sandwich plates with partially detached face-sheet and core, Finite Elements in Analysis and Design 62, 49-64 (2012).
- [10] V .Burlayenko, T. Sadowski, Influence of skin/core debonding on free vibration behaviour of foam and honeycomb cored sandwich plates, Int. J. Non-Linear Mechanics 45, 959-968 (2010).
- [11] J. M. Gattas, Z. You, Design and digital fabrication of folded sandwich structures, Automation in Construction 63, 79-87 (2016).
- [12] X. Zhou, H. Wang, Z. You, Mechanical properties of Miura-based folded cores under quasi-static loads, Thin-Walled Structures 82, 296-310 (2014).
- [13] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdama, A. A. Zadpoor, Mechanical properties of additively manufactured octagonal honeycombs, Materials Science and Engineering C 69, 1307-1317 (2016).
- [14] V. N. Burlayenko, H. Altenbach, T. Sadowski, An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates, Journal of Sound and Vibration 358, 152-175 (2015).
- [15] R. Seemann, D. Krause, Numerical Modeling of Nomex Honeycomb Sandwich Cores at Meso-Scale Level, Composite Structures 159, 702-718 (2017).
- [16] N. Haydn, G. Wadley, Multifunctional periodic cellular metals, Phil. Trans. R. Soc. A 364, 31-68 (2006).
- [17] D. Asprone, F. Auricchio, C. Menna, S. Morganti, A. Prota, A. Reali, Statistical finite element analysis of the buckling behavior of honeycomb structures, Composite Structures 105, 240-255 (2013).
- [18] A. Wilbert, W.-Y. Jang, S. Kyriakides, J. F. Floccari, Buckling and progressive crushing of laterally loaded honeycomb, International Journal of Solids and Structures 48, 803-816 (2011).
- [19] T. Jin, Z. Zhou, Z. Wang, G. Wu, X. Shu, Study on the effects of specimen in-plane size on the mechanical behavior of aluminium hexagonal honeycombs, Materials Science & Engineering A 635, 23-35 (2015).
- [20] L. Liu, P. Meng, H. Wang, Z. Guan, The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall, Composites Part B 76, 122-132 (2015).
- [21] S. Heimbs, Virtual testing core structures using dynamic finite elements simulations, Computational Material Science 45, 205-216 (2009).
- [22] R. Seemann, D. Krause, Numerical modelling of nomex honeycomb cores for detailed analyses of sandwich panel joints 11th World Congress on Computational Mechanics (WCCM XI) Jully 20-25 2014 - Barcelona, Spain.
- [23] Q. Kepeng, W. Zhi, Z. Weihong, The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity, Aerospace Science and Technology 58, 258-266 (2016).
- [24] Q. Kepeng, W. Zhi, Z. Weihong, The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity, Aerospace Science and Technology 58, 258-266 (2016).
- [25] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers, Comp. Mat. Sci. 39, 230-236 (2007).
- [26] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface - numerical determination of fracture parameters, Comp. Mat. Sci. 44, 941-950 (2009).
- [27] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mater. Sci. 52, 293-297 (2012).
- [28] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64, 285-288 (2012).
- [29] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Comp. Mater. Sci. 45, 693-697 (2009).
- [30] J. Gajewski, T. Sadowski, Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating Artificial Neural Networks and Finite Element Method, Comp. Mater. Sci. 82, 114-117 (2014).
- [31] L. Marsavina, T. Sadowski, Stress Intensity Factors for an Interface Kinked Crack in a Bi-Material Plate Loaded Normal to the Interface, Int. J. Frac. 145, 237-243 (2007).
- [32] T. Sadowski, L. Marsavina, Multiscale Modelling of Two-phase Ceramic Matrix Composites. Comp. Mat. Sci. 50, 1336-1346 (2011).
- [33] G. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comp. Mat. Sci. 62, 75-78 (2012).
- [34] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comp. Mat. Sci. 43, 171-178 (2008).
- [35] T. Sadowski, S. Samborski, Modelling of porous ceramics response to compressive loading, J. Am. Cer. Soc. 86, 2218-2221 (2003).
- [36] T. Sadowski, S. Samborski, Prediction of mechanical behavior of porous ceramics using mesomechanical modelling, Comp. Mat. Sci. 28, 512-517 (2003).
- [37] T. Sadowski, L. Marsavina, N. Peride, E.-M. Craciun, Cracks propagation and interaction in an orthotropic elastic material: Analytical and numerical methods, Comp. Mat. Sci. 46, 687-693 (2009).
- [38] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM, Comp. Mater. Sci. 44, 1307-1311 (2009).
- [39] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comp. Mat. Sci. 43, 75-81 (2008).
- [40] E. Postek, T. Sadowski, Assessing the influence of porosity in the deformation of metal-ceramic composites, Compos. Interf. 18, 57-76 (2011).
- [41] L. Marsavina, E. Linul, T. Voiconi, T. Sadowski, A comparison between dynamic and static fracture toughness of polyurethane foams, Polymer Testing 32, 673-680 (2013).
- [42] L. Marsavina, E. Linul, D. M. Constantinescu, D. Apostol, T. Voiconi, T. Sadowski, Refinements on fracture toughness of PUR foams, Eng. Fract. Mech. 129, 54-66 (2014).
- [43] H. Dębski, T. Sadowski, Modelling of microcracks initation and evolution along interfaces of the WC/Co composite by the finite element method, Comp. Mat. Sci. 83, 403-411 (2014).
Uwagi
EN
1. The authors would like to mention that this research has been done within the POLONEZ 2 project, grant agreement No. UMO-2016/21/P/ST8/00790, supported by the National Science Centre of Poland at the Lublin University of Technology within the European Union’s Horizon 2020 research and innovation pro-gramme under the Marie Skłodowska-Curie grant agreement No. 665778.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd1f2349-a7bd-4302-92e7-aed8e96ca616