PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sharp Logarithmic Inequalities for Two Hardy-type Operators

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For any locally integrable f on Rn, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: [WZÓR] for x ∈ Rn. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
Rocznik
Strony
237--247
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
  • Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
  • [1] M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), 1687–1693.
  • [2] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
  • [3] D. Gilat, The best bound in the LlogL inequality of Hardy and Littlewood and its martingale counterpart, Proc. Amer. Math. Soc. 97 (1986), 429–436.
  • [4] S. E. Graversen and G. Peskir, Optimal stopping in the LlogL-inequality of Hardy and Littlewood, Bull. London Math. Soc. 30 (1998), 171–181.
  • [5] G. Hardy, J. Littlewood, and G. Pólya, Inequalities, The University Press, Cambridge, 1959.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd1cccc6-8df2-4553-8465-c1cb98c43256
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.