PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties and cell viability of MgO-reinforced biografts fabricated for biomedical applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, biografts were produced by sol gel method by adding different rates of MgO which has bone-like crystal structure and high endurance into different proportions of Ca(NO3)24H2O, KOH, NaNO3, and P2O5 compounds. The biografts were investigated in terms of mechanical and biocompatibility properties. FTIR, SEM and XRD analyses were carried out to examine the chemical characteristics and changes in structural morphology. Mechanical properties were also investigated by conducting hardness and compression tests. In addition, cytotoxicity tests were conducted by using osteoblast cells. While results of FTIR and XRD analyses revealed that all biografts had HA (hydroxyapatite) and β-TCP contents, MgO peaks were also observed in biografts. In SEM images, grains of NonMgO and MgO-10 biografts had sharper edges, pores formed between grains and grain size increase with increasing MgO amount (MgO-20 and MgO-30). It was found that compression stress and hardness values increased as MgO content elevated. From the cytotoxicity tests, no any toxic effect was observed in the syntesized biografts.
Słowa kluczowe
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Adiyaman University,Vocational School of Technical Science, Adiyaman, Turkey
Bibliografia
  • [1] ANAND V., SINGH K.J., KAUR K., ARORA D.S., KAUR H., Investigation of 70SiO2-15CaO-10P2O5-5Na2O glass composition for bone regeneration applications, Smart Sci., 2014, 2(4), 191–195.
  • [2] BALAMURUGAN A., BALOSSIER G., KANNAN S., MICHEL J., REBELO A.H.S., FERREIRA J.M.F., Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass, Acta Biomater., 2007, 3
  • [3] BANERJEE S.S., TARAFDER S., DAVIES N.M., BANDYOPADHYAY A., BOSE S., Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics, Acta Biomat., 2010, (6), 4167–4174, 255–262.
  • [4] COURTHEOUX L., LAO J., NEDELEC J.M., JALLOT E., Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses, J. Phys. Chem. C, 2008, (112), 13663–13667.
  • [5] FAKHFAKH M., OYETOLA S., JOUINI N., VERBAERE A., PIFFARD Y., Structure refinement of rubidium- and thallium niobyl diphosphates. Comparison with related compounds, Mater Res. Bull., 1994, (29), 97–105.
  • [6] FAMERY R., RICHARD N., BOCH P., Preparation of - and β-tricalcium phosphate ceramics with andwithout magnesium addition, Ceram. Int., 1994, 20, 327–36.
  • [7] GEORGIOU G., KNOWLES J.C., Glass Reinforced Hydroxyapatite for Hard Tissue Surgery-Part 1: Mechanical Properties, Biomaterials, 2001, (22), 2811–2815.
  • [8] GIBSON I.R., KE S., BEST S.M., BONFIELD W., Effect of Powder Characteristics on the Sinterability of Hydroxyapatite Powders, J. Mater Sci., 2001, (12), 163–171.
  • [9] GIBSON I.R., REHMAN I., BEST S.M., BONFIELD W., Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate, J. Mater Sci.: Mater Med., 2000, 11(9), 533–539.
  • [10] GROOT K.D., KLEIN C.P.A.T., WOLKE J.G.C., BLIECK-HOGERVORST J.M.A., Chemistry of Calcium Phosphate Bioceramics, [in:] T. Yamamuro, L.L. Hench, J. Wilson (Eds.), Handbook of Bioactive Ceramics, Calcium Phosphate and Hydroxylapatite Ceramics, CRC Press, Boca Raton FL., 1990, 3–16.
  • [11] HENCH L.L., Bioceramics, J. Am. Ceram. Soc., 1998, 81(7), 1705–28.
  • [12] JARCHO M., SALSBURY R.L., THOMAS M.B., DOREMUS R.H., Synthesis and Fabrication of β-TCP (Whitlockite) Ceramics for Potential Prosthetic Applications, J. Mater Sci., 1979, 14, 142–50.
  • [13] KAUR G., PANDEY O.P., SINGH K., HOMA D., SCOTT B., PICKRELL G., A review of bioactive glasses: their structure, properties, fabrication and apatite formation, J. Biomed. Mater Res. A, 2014, 102(1), 254–274.
  • [14] KALITA S.J., BHATT H.A., Nanocrystalline Hydroxyapatite Doped with Magnesium and Zinc: Synthesis and Characterization, Mater Sci. Eng. C, 2007, (27), 837–848.
  • [15] KALITA S.J., BOSE S., HOSICK H.L., BANDYOPADHYAY A., CaO-P2O5-Na2O-based sintering additives for hydroxyapatite (HAp) ceramics, Biomaterials, 2004, 25(12), 2331–2339.
  • [16] KALITA S.J., FLEMING R., BHATT H., SCHANEN B., CHAKRABARTI R., Development of controlled strength-loss resorbable beta-tricalcium phosphate bioceramic structures, Mater Sci. and Eng. C, 2008, (28), 392–398.
  • [17] LI X., WANG XP., HE D.N., SHI J.L., Synthesis and characterization of mesoporous CaO-MO-SiO2-P2O5 (M=Mg, Zn,Cu) bioactive glasses/ composites, J. Mater Chem., 2008, 18, 4103–4109.
  • [18] LOPES M.A., SANTOS J.D., MONTEIRO F.J., Glass reinforced hydroxyapatite composites: secondary phases proportions and densification efects on biaxial bending strength, J. Biomed. Mater Res., 1999, (48), 734–740.
  • [19] MESTRES G., GINEBRA M.P., Novel magnesium phosphate cements with high early strength and antibacterial properties, Acta Biomater., 2011, 7(4), 1853–61.
  • [20] NAKONIECZNY D., PASZENDA Z., DREWNIAK S., RADKO T., LIS M., ZrO2-CeO2 ceramic powders obtained from a sol-gel proces using acetylacetone as a chelating agent for potential application in prosthetic dentistry, Acta Bioeng. Biomech., 2016, 18(3), 53–61.
  • [21] NAKONIECZNY D., WALKE W, MAJEWSKA J., PASZENDA Z., Characterization of magnesia-doped yttria-stabilized zirconia powders for dental technology applications, Acta Bioeng. Biomech., 2014,16(4), 99–106.
  • [22] NEDELEC J.M., COURTHEOUX L., JALLOT E., KINOWSKI C., LAO J., LAQUERRIERE P. et al., Materials doping through sol–gel chemistry: a little something can make a big difference, J. Sol–Gel Sci. Technol., 2008, (46), 259–271.
  • [23] OKI A., PARVEEN B., HOSSAIN S., ADENIJI S., DONAHUE H., Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials, J. Biomed. Mater Res. A, 2004, (69A), 216–221.
  • [24] PIJOCHA D., ZIMA A., PASZKIEWICZ Z., ŚLÓSARCZYK A., Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial, Acta Bioeng. Biomech., 2013,15(3), 53–63.
  • [25] RAHAMAN M.N., DAY D.E., BAL B.S., FU Q., JUNG S.B., BONEWALD L.F. et al., Bioactive glass in tissue engineering, Acta Biomater., 2011, (7), 2355–2373.
  • [26] RAZAVI M., FATHI M., SAVABI O., RAZAVI S.M., BENI B.H., VASHAEE D., TAYEBI L., Controlling the degradation rate of bioactive magnesium implants by electrophoretic deposition of akermanite coating, Ceram. Int., 2013, (40), 3865–3872.
  • [27] SO K., FUJIBAYASHI S., NEO M., ANAN Y., OGAWA T., KOKUBO T., NAKAMURA T., Accelerated degradation and improved bonebonding ability of hydroxyapatite ceramics by the addition of glass, Biomaterials, 2006, 27, 4738–44.
  • [28] TAN C.Y., YAGHOUBI A., RAMESH S., ADZILA S., PURBOLAKSONO J., HASSAN M.A. et al., Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite, Ceram. Int., 2013, (39), 8979–8983.
  • [29] TAS A.C., Combustion synthesis of calcium phosphate bioceramic powders, J. Eur. Ceram. Soc., 2000, (20), 2389–2394.
  • [30] WATTANUTCHARIYA W., CHANGKOWCHAI W., Characterization of Porous Scaffold from San-Gelatin/Hydroxyapatite for Bone Grafting, Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, 2014.
Uwagi
A part of this work was supported by Adiyaman University under project no. AMYOBAP/2014-0006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd17820d-a8b2-4f90-bb3a-5e16797742b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.