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DUAL PROBABILISTIC ANALYSIS OF THE 
TRANSIENT HEAT TRANSFER BY THE 
STOCHASTIC FINITE ELEMENT METHOD WITH 
OPTIMIZED POLYNOMIAL BASIS  

The main aim of this work is to contrast three various probabilistic computational 
techniques, namely analytical, simulation and perturbation-based, in a solution of 
the transient heat transfer problem in specific axisymmetric problem with Gaussian 
uncertainty in physical parameters. It is done thanks to a common application of 
the Finite Element Method program ABAQUS (for the deterministic part) and sym-
bolic algebra system MAPLE, where all probabilistic procedures have been pro-
grammed. We determine up to the fourth order probabilistic characteristics of the 
resulting temperatures, i.e. expectations, coefficients of variation, skewness and 
kurtosis together with the histograms – all as the functions of the input coefficient 
of variation of random heat conductivity coefficient. Stochastic perturbation tech-
nique is implemented here using the tenth order Taylor series expansion and tradi-
tional Least Squares Method released with polynomial basis whose final order is 
a subject of the separate statistical optimization. Probabilistic results computed 
show almost perfect agreement of all the probabilistic characteristics under consid-
eration, which means that the traditional simulation method may be replaced due to 
the time and computer scale savings with the stochastic perturbation method.  

Keywords: heat transfer; Stochastic Finite Element Method; Monte-Carlo simula-
tion; stochastic perturbation technique 

1. Introduction  

Heat transfer phenomena in both statistically homogeneous and heteroge-
neous media include a number of uncertainty sources as stochastic fluctuations 
and waviness of boundaries and boundary conditions, natural unpredictability of 
physical properties of solids, fluids, gases or their mixtures as well as their mate-
rial parameters. Such phenomena were under consideration since many years, cf. 
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Chorin (1974) [1] and Emery (2004) [2], also in the context of various couplings 
with fluid flow or mass transfer. There exists a number of different techniques 
available to determine probabilistic moments of the temperature distribution 
(and its time fluctuation) as the Monte-Carlo simulation (Binder and Heermann 
(1977)  [3]), polynomial chaos and Karhunen-Loeve expansions (Xiu and Karni-
adakis (2003) [4]), stochastic perturbation methods, see Kamiński (2013) [5], 
and even interval analysis approach engaged by Wang and Qiu (2015) [6]. It is 
widely known that traditional Monte-Carlo simulation is usually the very large 
time consuming probabilistic computational method, especially in the view of 
highly unstable heating or freezing processes that demand a huge number of 
time steps until steady state is reached.  

That is why a reliable numerical stochastic method of significantly lower 
overall cost is required, which additionally allows for a determination of higher 
order statistics to enable for a recognition of probability distribution of the re-
sulting temperature or heat flux. Therefore, the main aim of this paper is to 
demonstrate an implementation of the transient heat transfer analysis with 
Gaussian random parameters by using of the generalized stochastic perturbation 
technique. Time and computer power consumption in this method is relatively 
low with respect to any other existing probabilistic method. Its implementation 
is based on the Response Function Method, where nodal temperatures and their 
time fluctuations are approximated by random polynomials whose orders and 
coefficients are determined and optimized via separate FEM transient heat trans-
fer experiments. Duality of this approach originates from the fact that it is possi-
ble to integrate these polynomials according to classical definitions of the proba-
bility theory and, alternatively, to include them into the Taylor series expansion 
to calculate basic probabilistic moments of the desired state parameters. This 
approach is illustrated with the use of statistically homogenous circular conduc-
tor having random conductivity and it is modeled by the three alternative proba-
bilistic techniques - semi-analytical, simulation-based and the one adjacent to the 
generalized stochastic perturbation technique.  

Deterministic transient heat transfer problem is solved numerically by using 
of the Finite Element Method program ABAQUS/CEA ver. 6.10 and also analyti-
cally thanks to the classical series solution. All the probabilistic procedures adja-
cent to a combination of two deterministic and three entirely different probabilis-
tic method are implemented in the computer algebra system MAPLE, v. 17. We 
assume that heat conductivity coefficient k has Gaussian distribution with speci-
fied expectation and some a priori given variability interval for its coefficient of 
variation,    15.0,00.0k . We contrast here the basic probabilistic character-
istics of the resulting temperature, i.e. its expectations, coefficients of variations, 
skewness and kurtosis at the steady-state conditions for in a specific point of the 
heated disk. An observed very good coincidence in-between these methods and 
their results makes the proposed dual probabilistic computational technique very 
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attractive and promising in further computational physics experiments. One 
needs to mention that this methodology may find its application to stochastic fire 
simulation similar to the considerations provided by Sakji, Soize and Heck 
(2009) [7].  

2. Probabilistic analysis of the heat transfer problem  

 Generally, transient heat flow problem consists in determining the tempera-
ture field   ,x  governed by the following differential equation: 
 

   ,,0;;0
,,   iijij xgkc  i=1,2,3, (1) 

 
where c is the heat capacity characterizing the region  ,   is the density of the 
material contained in  , ijk  is thermal conductivity tensor, while g is the rate of 
heat generated per unit volume; variables   and   denote temperature field 
values and time, respectively. This equation should fulfil the boundary condi-
tions on the additional subsets of the external boundary  , that are given as 
follows:  
1) temperature (essential) boundary conditions  
 

,;~
  ix  (2) 

 
and for q  part of the total  :  

2) heat flux (natural) boundary conditions 
 

q
n

ˆ

 ; qix  , (3) 

 
where    q  and }{ q  . Initial conditions are proposed 
here as  
 

 0;0
ix  ; ix . (4) 

 
 Let us consider further some continuous temperature variations  ix  de-
fined in the interior of the region   and vanishing on  . Multiplying Eqn. 
(4) by the test function specified and integrating it over the entire  , we obtain  
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   0
,, 



dgkc
ijij   ; ),0[;  ix . (5) 

 
It is well known that this formulation is frequently rewritten as  
 

    0ˆ,,  
 q

dqdgkTc ijij


  ; 

  ,0; ix . 
(6) 

 
 The equation stated below is the transient formulation of the principle of 
virtual temperatures and is used to provide its stochastic perturbation technique 
counterpart relevant to the generalized stochastic perturbation technique [4]. We 
use for this purpose Taylor series expansion of random temperatures process as  
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where k is heat conductivity coefficient characterizing isotropic media, n stands 
for the order of stochastic expansion, while superscript  0.  means the mean val-
ues of the given parameter or state function. This Taylor series representation is 
inserted into the basic definitions, i.e. expected values    ,kE , standard devi-
ations    ,k , coefficient of variation    ,k , skewness    ,k and 
kurtosis    ,k  to develop analytical perturbation-based formulas at the giv-
en time τ as 
 

      dxxpkkE k




  ,, ,    

          
2
1

2,,,












 




dxxpkEkk k , 
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 Obviously,       ,,, 43 kk  denote here the third and the fourth cen-
tral probabilistic moments of the temperature, while  xpk  is the probability 
density function (PDF) of random heat conductivity (postponed in full analytical 
version for a brevity of the presentation). Practical engineering computations 
include ε=1 and demand determination of higher order partial derivatives of the 
resulting temperature with respect to the randomized heat capacity. These are 
calculated from the hierarchical equations - the set of the algebraic equations of 
the systematically increasing order (from 0th up to the nth). Recursive form of 
these equations is demonstrated below with    

 zeroth-order partial differential equation  
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 as well as the nth order equation  
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(11) 

 
 Further simplifications in this particular case study for the last equation are 
remarkable as most of the partial derivatives with respect to the input random 
variable simply vanish. Finally, having solved these equations for 0  and for up 
to the nth order partial derivatives, respectively, we derive the expressions for 
the expected values and higher probabilistic moments and the coefficients for 
temperature field and its time fluctuations. 

3. Stochastic Finite Element Method equations   

 Let us assume that the region   is discretized by the use of the set of finite 
elements and that the scalar temperature field  ix  is described by the nodal 
temperatures vector T  
 

     Txx ii  ; i=1,2,3; α=1,2,…,N, (12) 
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where N is the total number of degrees of freedom introduced. The temperature 
derivatives can be written in the form   
 

 Tii ,,  , i=1,2,3.  (13) 
 
Moreover, let us introduce the capacity matrix C , the heat conductivity ma-

trix K  and the vector P  as follows:  
 




 dcC   , 


 dkK jiij ,,   ,   

 


dqdgP 


  ˆ . 
(14) 

 
Next, let us introduce these matrixes into the additional variational formulation 
we obtain the following algebraic equations system:  
 

 PTKTC  . (15) 

 
The main issue in transient problems is the additional time discretization using 
some time increment Δt. Then we can rewrite the last equation in the following 
manner:  
 

   
  


 PtTK

t
tTttT

C 



. (16) 

 
 Considering the second component in this statement we obtain the explicit 
method, where the nodal temperatures vector in this component is taken at the 
beginning of this time step. However, it is possible to introduce the extra coeffi-
cient 10    to include in this term the temperatures vector after the time step 
also. There holds  
 

   
       


  PtTttTK

t
tTttT

C 



1 ,  (17) 

 
where 0  is equivalent to the explicit method, 2/1 serves for the Crank-
Nicholson method, δ=2/3 stands for the Galerkin method and at last 1 is 
used in the implicit method (one can use this algorithm with   as the extra in-
put parameter); there are also three level schemes, where the temperatures in the 
moments ttttt  ,,  are included at once.  
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 Analogously to the previous considerations (provided also for the second or-
der analysis before) we obtain the following systems of algebraic equations de-
scribing the generalized stochastic formulation of the transient heat flow problem:  
 zeroth-order equation  

 
00000
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and the nth order equation  
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 As it is clear now, the DDM version needs a formation and the solution of the 
increasing order equations obtained from the initial one by a systematic differenti-
ation with respect to the random input variable provided in a quite deterministic 
way. It is also clear that the probabilistic transient problem needs successive poly-
nomial responses from time increment to the time increment, therefore for a dis-
crete time moment τ we introduce the following polynomial approximation:  
 

    m
m bDT  

  , m=0,…,n-1; β=1,…,N,   ,0 . (20) 
 
Hence, it yields  
 

          m
miii bDxTxx  

 , ;    i=1,2,3; =1,2,...,N, 
m=0,…,n-1;   ,0 . 

(21) 

 
Therefore, the temperature gradients are similarly determined as  
 

      m
mjjj bDT  

 ,,,  , i=1,2,3, m=0,…,n-1;   ,0 . (22) 
 
 Optimization of this local polynomial basis order n is inherent in its Least 
Squares Method approximation. An optimum choice is equivalent to the poly-
nomial demonstrating extreme correlation to the set of FEM experiments (pref-
erably should equal to 1). This polynomial should minimize at the same time the 
fitting variance and the RMS error of the entire fitting procedure (an illustration 
of this process in included in Table 1 below). Finally, one realizes that the tem-
perature-dependent physical parameters may lead to further numerical complica-
tions in the SFEM implementation for transient problems using the Response 
Function Method even with polynomial basis.  
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4. Numerical analysis  

 We consider statistically homogeneous heat convector of the following cir-
cular solid domain (Fig. 1) where non-stationary heat transfer given by the Fou-
rier law based on polar coordinate system  ,r  is analyzed  
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,  (23) 

 
where kcK /  includes in turn heat capacity c, mass density ρ as well as heat 
conductivity coefficient k. The boundary conditions are set on the outer surfaces 
of this axisymmetric region ( 11)( TRrT   and 22 )( TRrT  ) and are all fully 
deterministic.  
 As it is known, cf. Carlsaw and Jaeger (1959) [8], this problem has some 
analytical solution expressed by the Bessel functions that can be rewritten as   
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where 2,1,   iTT
iRri , and the coefficients na  are non-negative square 

roots for the following algebraic equation:  
 

        010202010  aRYaRJaRYaRJ  (25) 
 

while 00 ,YJ  are the well-known Bessel functions of the first kind.  
 

 
Fig. 1. Computational domain with the boundary conditions  
Rys. 1. Geometria modelowanej struktury wraz z warunkami brzegowymi  
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Fig. 2. Spatial discretization of the problem 
in the system ABAQUS 
Rys. 2. Dyskretyzacja w programie MES 
ABAQUS  

 

 
 Analytical solution contrasted further in computational experiments is ob-
tained in the program MAPLE with the first 318 expansion terms here and for 
the boundary temperatures equal to    CTCT  0,100 21  , correspondingly. 
The following material properties are adopted (adjacent to the stainless steel 

plate in room temperature): ,7800,440 34 









m
kg

Km
Jc   while k  is the 

input Gaussian random variable with the expectation   





Km
WkE 258  and 

coefficient of variation    15.0,00.0k . A series of the computational FEM 
solutions has been obtained with the system ABAQUS CEA, ver. 6.10 and its  
4-noded linear heat transfer quadrilaterals (DC2D4 type) - spatial discretization 
includes 13 strips in radial direction and 82 finite elements on the inner and out-
er circumference (1088 in total). Time stepping procedure is based on the fun-
damental increment Δt=108 secs and includes 100 increments until the steady-
state conditions. The resulting temperature, whose probabilistic moments are 
contrasted further, has been obtained at the radius equal to r=1.74887 [m]. The 
Least Squares Method has been programmed with the use of Taylor-Newton-
Gauss algorithm that enables for direct computation of the correlation of the se-
ries of trial points with the fitting polynomial function as well as RMS error of 
this procedure, total sum of the residuals squares and the curve fitting variance. 
Such a statistical optimization has been carried out for the polynomials of the 
degrees from the ninth to the second one and it is based upon maximization of 
the correlation and minimization of  the RMS error and the fitting variance at the 
same time; the additional data justifying the choice of the fifth order are collect-
ed in Table 1. A comparative Monte-Carlo simulation has been performed with 
the use of 105 random trials and it enables to contrast input with the output his-
tograms of heat conductivity coefficient and the resulting temperatures for 
α(k)=0.06 (Fig. 3) and α(k)=0.15 (Fig. 4). The left histograms include both linear 
trends adjacent to the theoretical PDF shape; one may easily discover high quali- 
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Table 1. Statistical optimization of the random polynomial basis order  
Tabela 1. Optymalizacja statystyczna losowego wielomianu 

Polynomial order Correlation RMS error Squares sum Variance 
9 -0,430867 1,10017E11 1,33141E23 1,33404E22 
8 0,714752 6,08909E8 4,07847E18 2,29869E19 
7 0,276704 2,58471E7 7,34881E15 1,49208E15 
6 0,999512 0,152492 0,255802 0,248877E-1 
5 1,000000 0,312325E-2 0,107128E-3 0,100123E-4 
4 0,999989 0,227047E-1 0,566403E-2 0,567674E-3 
3 0,999678 0,122030 0,163791 0,163738E-1 
2 0,995632 0,462267 2,35068 0,233968 

 
ty of the Gaussian variable internal generator in the system MAPLE. It is re-
markable that all the density functions are very close in their shapes to the 
Gaussian distributions. One may observe that the final PDF of the steady state 
temperature for α(k)=0.15 (right graph in Fig. 4) shows some apparent non-zero 
skewness contrary to the PDF determined with a smaller value of the coefficient α(k).  
 

 
Fig. 3. Histograms of input and output random variables for ߙ = 0.06  
Rys. 3. Histogramy wejściowej i wynikowej zmiennej losowej dla ߙ = 0.06  
 

 
Fig. 4.  Histograms of input and output random variables  α = 0.15  
Rys. 4. Histogramy wejściowej i wynikowej zmiennej losowej dla α = 0.15  
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 Further, we compute in turn the expected values, coefficients of variation, 
skewness and kurtosis for the polynomial of the fifth degree and depending on α 
in the range of 0,0 ÷ 0,15 and these statistical parameters are collected in Figs. 5-8. 
The results are summarized for both Stochastic Finite Element Method (SFEM) 
 

 
Fig. 5. Expected values of the temperature TA as a function of input coefficient of variation α  
Rys. 5. Wartości oczekiwane temperatury TA w funkcji wejściowego współczynnika wariancji α  

  
Fig. 6. Coefficients of variation of the temperature TA as a function of input coefficient of varia-
tion α  
Rys. 6. Współczynniki wariancji temperatury TA w funkcji wejściowego współczynnika wariancji α 
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and analytical solution (AS) in such a way that additional abbreviation MP is 
adequate to the results obtained by the tenth order stochastic perturbation meth-
od, MA - represents the results obtained by analytical integration directly from 
the probability theory definitions and, consecutively, MC stands here for the re-
sults estimated via the Monte Carlo simulation scheme.  
 

 
Fig. 7. Skewness of the temperature TA as a function of input coefficient of variation α 
Rys. 7. Skośność temperatury TA w funkcji wejściowego współczynnika wariancji α 

 
Fig. 8. Kurtosis of the temperature TA as a function of input coefficient of variation α 
Rys. 8. Kurtoza temperatury TA w funkcji wejściowego współczynnika wariancji α 
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 Expected values calculated via all the SFEM approaches show some under-
estimation of the analytical results. Additionally, these expectations decrease all 
moderately together with an increase of the input coefficient of variation. Sys-
tematically simulation, perturbation and integral methods return almost the same 
results with accidental numerical discrepancies. Coefficients of variation (Fig. 6) 
are all the same independently of the calculation method and all linearly increase 
together with α(k). This is a consequence of similarity of the temperatures histo-
gram to the Gaussian bell-shaped curve detected before in Figs. 3-4. A compari-
son of skewness calculated via different methods (Fig. 7) is not so perfect but the 
principal trend remains the same – this is a nonlinear convex increase together 
with the input CoV through dominantly nonnegative values. Remarkably, the 
same range of all numerical results enable to conclude that the resulting PDF 
increases its positive skewness together with an increase of input random fluctu-
ations. Similar observations concern the kurtosis of steady-state temperature 
(Fig. 8) – both FEM and series analytical solution return used in conjunction 
with any of the probabilistic method almost the same numbers here. One should 
remark that the total number of random trials applied for third and fourth order 
statistics (similarly to the analysis carried out by Wan and Karniadakis (2006) 
[9]) could be increased according to a remarkable asymptotic convergence of 
these estimators about their principal trends. Nevertheless, taking into account 
relatively small values of both skewness and kurtosis as well as constant ratio of 
the output versus input randomness level one needs to conclude that the final 
temperature has the probability density function very close to the Gaussian one.  

5. Concluding remarks  

 The most important conclusion that can be drawn from this analysis is that 
the steady state temperature probabilistic characteristics are practically the same 
according to all the probabilistic methods included into this comparative study; 
this observation is almost independent of an input uncertainty in Gaussian heat 
conductivity coefficient. So that one may notice that the generalized stochastic 
perturbation technique implemented with the Least Squares Method with poly-
nomial basis of an order subjected to statistical optimization overcomes most of 
numerical discrepancies and limitations of the Second Order Second Moment 
(SOSM) numerical technique, see Kamiński and Hien (1999) [10]. It enables for 
further time and computer effort savings, at least while studying Gaussian input 
uncertainties in transient heat transfer linear problems.  
 A precision of the generalized stochastic perturbation technique used in 
conjunction with the Finite Element Method for other probability distributions 
deserves some separate computational studies and comparative validation. It is 
very important to notice that the SFEM methodology proposed here enables for 
a very precise determination of higher order statistics of the temperatures during 
transient process with overall computational cost similar rather to the original 
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deterministic problem than the Monte-Carlo simulation scheme, even in its im-
portance sampling version. Further implementation of this dual probabilistic 
technique towards SFEM modeling of transient heat transfer problems with 
state-dependent physical parameters should be provided. Its applicability to the 
solution of some inverse problems in thermodynamics is also notice worthy sim-
ilarly to the research findings of Blackwell and Beck (2010) [11].  
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DUALNA PROBABILISTYCZNA ANALIZA NIESTACJONARNEGO 
PRZEPŁYWU CIEPŁA PRZY UŻYCIU STOCHASTYCZNEJ METODY 
ELEMENTÓW SKOŃCZONYCH  

S t r e s z c z e n i e   

Głównym celem niniejszej pracy jest porównanie trzech różnych probabilistycznych metod 
numerycznych, tj. metody analitycznej, symulacyjnej, a także metody perturbacji, podczas rozwią-
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zywania pewnego zagadnienia osiowo-symetrycznego, w którym współczynnik przewodnictwa 
ciepła jest Gaussowskim parametrem losowym. Porównanie takie jest przeprowadzone przy uży-
ciu systemu Metody Elementów Skończonych ABAQUS (dla części deterministycznej rozwiąza-
nia), a także pakietu algebry komputerowej MAPLE, w którym zaimplementowano wszystkie pro-
cedury losowe. W pracy wyznacza się centralne momenty probabilistyczne do rzędu czwartego 
włącznie, tj. wartości oczekiwane, współczynniki wariancji, skośność i kurtozę, jak również od-
powiednie histogramy – wszystkie one są wyznaczone w funkcji wejściowego współczynnika 
wariancji. Metoda perturbacji stochastycznej jest zaimplementowana przy użyciu rozwinięcia 
w szereg Taylora rzędu dziesiątego, a także z wykorzystaniem tradycyjnej Metody Najmniejszych 
Kwadratów. Metoda ta umożliwia wyznaczenie wielomianowej funkcji odpowiedzi, której rząd 
jest przedmiotem oddzielnej optymalizacji statystycznej. Otrzymane wyniki probabilistyczne po-
kazują bardzo dobrą zgodność wszystkich wyznaczanych charakterystyk losowych, co oznacza 
w praktyce, iż tradycyjna metoda symulacji może zostać zastąpiona przez metodę perturbacji sto-
chastycznej w celu wielokrotnego zmniejszenia czasu oraz mocy obliczeniowej.  

Słowa kluczowe: przepływ ciepła; Stochastyczna Metoda Elementów Skończonych; metoda sy-
mulacji Monte-Carlo; metoda perturbacji stochastycznej 
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