PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital Elevation Model resolution and its impact on the spatial pattern of rainfalltemperature prediction at the catchment scale: The case of the Mille catchment, Ethiopia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a mountainous catchment, understanding the interaction between DEM resolution and climatic variables is essential for the accurate spatial interpolation of areal mean monthly and annual rainfall and temperature, which is required as an input for further applications such as hydrological and hydraulic modeling, agriculture, and environmental conservation. This case study applied the geostatistical interpolation technique, kriging with external drift (KED), with a digital elevation model (DEM) with various horizontal resolutions, which were used to assess the effects of the DEM horizontal resolutions on the spatial distributions of rainfall and temperature by focusing on interpolating the mean monthly and annual rainfall and temperature over a spatially diversified catchment. The assessment was undertaken using spatially and temporally complete sampled historical climatic datasets, and consequently, the spatial pattern of monthly and annual rainfall (temperature) from east to the west gradually increases or decreases following the DEM elevation increment along the same direction. As a result, the finer-resolution DEM (90-m SRTM-DEM) had a considerable impact on predicting the mean monthly minimum and maximum temperatures, whereas the resampled 500-m SRTM-DEM performed relatively better in mean monthly and annual rainfall and annual minimum temperature estimation values.
Twórcy
  • Africa Center of Excellence for Water Management, Addis Ababa University, Ethiopia
Bibliografia
  • Adhikary S.K., Muttil N., Yilmaz A.G., 2017, Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments, Hydrological Processes, 31 (12), 2143-2161, DOI: 10.1002/hyp.11163.
  • Aydin O., 2018, Evaluation of kriging with external drift method in spatial modelling of precipitation: a case of Aegean Region, Turkey, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 56, 1-18.
  • Berhanu B., Seleshi Y., Melesse A.M., 2014, Surface water and groundwater resources of Ethiopia: potentials and challenges of water resources development, [in:] Nile River Basin, A.M. Melesse, W. Abtew, S.G. Setegn (eds.), Springer International Publishing, Switzerland, 99-117, DOI: 10.1007/978-3-319-02720-3.
  • Berhanu B., Seleshi Y., Demisse S.S., Melesse A.M., 2016, Bias correction and characterization of climate forecast system re-analysis daily precipitation in Ethiopia using fuzzy overlay, 23 (2), 230-243, DOI: 10.1002/met.1549.
  • Bertini C., Buonora L., Ridolfi E., Russo F., Napolitano F., 2020, On the use of satellite rainfall data to design a dam in an ungauged site, Water, 12 (11), DOI: 10.3390/w12113028.
  • Brown D.G., Bian L., Walsh S.J., 1993, Response of a distributed watershed erosion model to variations in input data aggregation levels, Computers and Geosciences, 19 (4), 499-509, DOI: 10.1016/0098-3004(93)90078-J.
  • Cantet P., 2017, Mapping the mean monthly precipitation of a small island using kriging with external drifts, Theoretical and Applied Climatology, 127, 31-44, DOI: 10.1007/s00704-015-1610-z.
  • Chen H.E., Chiu Y.Y., Tsai T.L., Yang J.C., 2020, Effect of rainfall, runoff and infiltration processes on the stability of footslopes, Water, 12 (5), DOI: 10.3390/W12051229.
  • Chiew F.H.S., McMahon T.A., 2002, Modelling the impacts of climate change on Australian streamflow, Hydrological Processes, 16 (6), 1235-1245, DOI: 10.1002/hyp.1059.
  • Dawit A., 2010, Future climate of Ethiopia from PRECIS Regional Climate Model Experimental Design, available online https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/appliedscience/precis/precis_experimental_design_dawit.pdf (data access 15.04.2022).
  • Dinku T., 2019, Challenges with availability and quality of climate data in Africa, [in:] Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation, A.M. Melesse, W. Abtew, G. Senay (eds.), Elsevier, 71-80, DOI: 10.1016/B978-0-12-815998-9.00007-5.
  • Gebremedhin M.A., Lubczynski M.W., Maathuis B.H.P., Teka D., 2021, Novel approach to integrate daily satellite rainfall with in-situ rainfall, Upper Tekeze Basin, Ethiopia, Atmospheric Research, 248, 105135, DOI: 10.1016/j.atmosres.2020.105135.
  • Goovaerts P., 1997, Geostatistics for Natural Recources Evaluation, Oxford University Press, 496 pp.
  • Hudson G., Wackernagel H., 1994, Mapping temperature using kriging with external drift: Theory and an example from Scotland, International Journal of Climatology, 14 (1), 77-91. DOI: 10.1002/joc.3370140107.
  • Khorsandi N., Mahdian M.H., Pazira E., Nikkami D., Chamheidar H., 2012, Comparison of different interpolation methods for investigating spatial variability of rainfall erosivity index, Polish Journal of Environmental Studies, 21 (6), 1659-1666.
  • Kim C., Kim D.H., 2020, Effects of rainfall spatial distribution on the relationship between rainfall spatiotemporal resolution and runoff prediction accuracy, Water, 12 (3), DOI: 10.3390/w12030846.
  • Kim S.-N., Lee W.-K., Shin K.-I, Kafatos M., Seo D.J., Kwak H.-B., 2010, Comparison of spatial interpolation techniques for predicting climate factors in Korea, Forest Science and Technology, 6 (2), 97-109, DOI: 10.1080/21580103.2010.9671977.
  • Lin S., Jing C., Chaplot V., Yu X., Zhang Z., Moore N., Wu J., 2010, Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients, Hydrology and Earth System Sciences Discussions, 7 (4), 4411-4435, DOI: 10.5194/hessd-7-4411-2010.
  • Lu S., ten Veldhuis M.C., van Giesen N., 2020, A methodology for multiobjective evaluation of precipitation products for extreme weather (in a data-scarce environment), Journal of Hydrometeorology, 21 (6), 1223-1244, DOI: 10.1175/JHM-D-19-0157.1.
  • Matheron G., Hasofer A.M., 1990, Estimating and choosing: an essay on probability in practice, Journal of the American Statistical Association, 85 (412), 1167-1168, DOI: 10.2307/2289620.
  • Meena S.R., Nachappa T.G., 2019, Impact of spatial resolution of digital elevation model on landslide susceptibility mapping: A case study in Kullu Valley, Himalayas, Geosciences, 9 (8), DOI: 10.3390/geosciences9080360.
  • Melesse A.M., Abtew W., Setegn S.G. (eds.), 2014, Nile River Basin, Springer International Publishing, Switzerland, 718 pp., DOI: 10.1007/978-3-319-02720-3.
  • Moore I.D., Gessler P.E., Nielsen G.A., Peterson G.A., 1991, Soil attribute prediction using terrain analysis, Soil Science Society of America Journal, 57 (2), 443-453, DOI: 10.2136/sssaj1993.03615995005700020026x.
  • Novikov S.L., 1981, Elevation: A major influence on the hydrology of New Hampshire and Vermont, USA, Hydrological Sciences Bulletin, 26 (4), 399-413, DOI: 10.1080/02626668109490904.
  • Pebesma E.J., Wesseling C.G., 1998, Gstat: a program for geostatistical modelling, prediction and simulation, Computers and Geosciences, 24 (1), 17-31, DOI: 10.1016/S0098-3004(97)00082-4.
  • Rata M., Douaoui A., Larid M., Douaik A., 2020, Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria, Theoretical and Applied Climatology, 141 (3-4), 1009-1024, DOI: 10.1007/s00704-020-03218-z.
  • Reddy A.S., Reddy M.J., 2015, Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT, Journal of Earth System Science, 7, 1517-1529, DOI: 10.1007/s12040-015-0617-2.
  • MoWR, 2009, Mille and Dirma integrated sub-watershed management study project, Federal Democratic Republic Of Ethiopia Ministry Of Water Resources.
  • Rossiter D.G., 2014, Applied Geostatistics, Exercise 5b: Predicting from point samples (Part 4) Lognormal Kriging. Part 4.
  • Rossiter D.G., 2019, Applied Geostatistics Tutorial : Regional mapping of climate variables from point samples, Cornell University, Section of Soil & Crop Sciences, ISRIC-World Soil Information.
  • Schoorl J.M., Sonneveld M.P.W., Veldkamp A., 2000, Three-dimensional landscape process modelling: the effect of DEM resolution, Earth Surface Processes and Landforms, 25 (9), 1025-1034, DOI: 10.1002/1096-9837(200008)25:93.0.CO;2-Z.
  • Simanek D.E., Holden J., 2020, Environmental sciences, [in:] Science Askew, D.E. Simanek, J. Holden (eds.), CRC Press, 76-88, DOI: 10.1201/9781420033564-12.
  • Isaaks E.H., Srivastava R.M., 1994, An introduction to Applied Geostatistics, Geographical Analysis, 26 (3), 282-283, DOI: 10.1111/j.1538-4632.1994.tb00325.x.
  • Taesombat W., Sriwongsitanon N., 2009, Areal rainfall estimation using spatial interpolation techniques, Science Asia, 35 (3), 268-275, DOI: 10.2306/scienceasia1513-1874.2009.35.268.
  • Vaze J., Teng J., Spencer G., 2010, Impact of DEM accuracy and resolution on topographic indices, Environmental Modelling and Software, 25 (10), 1086-1098, DOI: 10.1016/j.envsoft.2010.03.014.
  • Verdin A., Rajagopalan B., Kleiber W., Funk C., 2015, A Bayesian kriging approach for blending satellite and ground precipitation observations, Water Resources Research, 51 (2), 908-921, DOI: 10.1002/2014WR015963.
  • Voltz M., Webster R., 1990, A comparison of kriging, cubic splines and classification for predicting soil properties from sample information, Journal of Soil Science, 41 (3), 473-490, DOI: 10.1111/j.1365-2389.1990.tb00080.x.
  • Washington R., Harrison M., Conway D., Black E., Challinor A., Grimes D., Jones R., Morse A., Kay G., Todd M., 2006, African climate change: Taking the shorter route, Bulletin of the American Meteorological Society, 87 (10), 1355-1366, DOI: 10.1175/BAMS-87-10-1355.
  • Oliver M.W., Webster R., 2015, Basic Steps in Geostatistics: The Variogram and Kriging, Springer, Cham, 100 pp.
  • Wechsler S.P., 2007, Uncertainties associated with digital elevation models for hydrologic applications: A review, Hydrology and Earth System Sciences, 11 (4), 1481-1500, DOI: 10.5194/hess-11-1481-2007.
  • Wilson J.P., Spangrud D.J., Nielsen G.A., Jacobsen J.S., Tyler D.A., 1998, Global positioning system sampling intensity and pattern effects on computed topographic attributes, Soil Science Society of America Journal, 62 (5), 1410-1417, DOI: 10.2136/sssaj1998.03615995006200050038x.
  • Zhang P., Liu R., Bao Y., Wang J., Yu W., Shen Z., 2014, ScienceDirect Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed, Water Research, 53, 132-144, DOI: 10.1016/j.watres.2014.01.018.
  • Zhang W., Montgomery D.R., 1994, Digital elevation model grid size, landscape representation, and hydrologic simulation, Water Resources Research, 30 (4), 1019-1028, DOI: 10.1029/93WR03553.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd144e51-f70f-4b68-90e1-aa94d5b402a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.