PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparative study of 2DOF PID and 2DOF fractional order PID controllers on a class of unstable systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proportional-integral-derivative (PID) controllers have experienced series of structural modifications and improvements. Example of such modifications are set-point weighting and fractional ordering. While the former is to achieve two-degree-of-freedom (2DOF) ability of set-point tracking and disturbance rejection, the latter is to ensure smooth control action. Therefore, this paper reviews various forms of PID controllers and provides a comparative analysis of 2DOF PID and 2DOF fractional order PID (FOPID) controllers. The paper also discusses the conversion of one PID form to another. For the comparative analysis of the various controllers, a class of unstable systems are considered. Simulation result shows that in most cases the conversion from one form to another does not significantly affect the performance of the system. It is also observed that the 2DOF controllers (2DOF PID and 2DOF FOPID) improved significantly the performance of the ordinary PID controllers.
Rocznik
Strony
635--682
Opis fizyczny
Bibliogr. 103 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
autor
  • Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
  • Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
autor
  • Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
  • PETRONAS Group Technical Solutions, Dayabumi Complex, Jalan Sultan Hishamuddin, 50050 Kuala Lumpur, Malaysia
Bibliografia
  • [1] K. J. Åström and T. Hägglund: The future of PID control, Control engineering practice, 9(11) (2001), 1163-1175.
  • [2] P. Shah and S. Agashe: Review of fractional PID controller, Mechatronics, 38 (2016), 29-41.
  • [3] V. M. Alfaro and R. Vilanova: Conversion formulae and performance capabilities of two-degree-of-freedom PID control algorithms, in Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on. IEEE, 2012, pp. 1-6.
  • [4] M. Araki and H. Taguchi: Two-degree-of-freedom PID controllers, International Journal of Control Automation and Systems, 1 (2003), 401-411.
  • [5] K. H. Ang, G. Chong, and Y. Li: PID control system analysis, design, and technology, IEEE transactions on control systems technology, 13(4) (2005), 559-576.
  • [6] V. M. Alfaro and R. Vilanova: Model-Reference Robust Tuning of PID Controllers, Springer, 2016.
  • [7] K. Bingi, R. Ibrahim, M. N. Karsiti, and S. M. Hassan: Fractional order set-point weighted PID controller for pH neutralization process using accelerated PSO algorithm, Arabian Journal for Science and Engineering, 43(6) (2018), 2687-2701.
  • [8] R. Sharm, P. Gaur, and A. Mittal: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload, ISA transactions, 58 (2015), 279-291.
  • [9] P. Dwivedi, S. Pandey, and A. Junghare: Performance Analysis and Experimental Validation of 2-DOF Fractional-Order Controller for Underactuated Rotary Inverted Pendulum, Arabian Journal for Science and Engineering, 12 (2017), 1-25.
  • [10] S. Pandey, P. Dwivedi, and A. Junghare: A novel 2-DOF fractional order Pλ -Dμ controller with inherent anti-windup capability for a magnetic levitation system, AEU-International Journal of Electronics and Communications, 79 (2017), 158-171.
  • [11] R. Azarmi, M. Tavakoli-Kakhki, A. K. Sedigh, and A. Fatehi: Analytical design of fractional order PID controllers based on the fractional set-point weighted structure: Case study in twin rotor helicopter, Mechatronics, 31 (2015), 222-233.
  • [12] S. Debbarma, L. C. Saikia, and N. Sinha: Automatic generation control of multi-area system using two degree of freedom fractional order PID controller: a preliminary study, in Power and Energy Engineering Conference (APPEEC), 2013 IEEE PES Asia-Pacific. IEEE, 2013, pp. 1-6.
  • [13] S. Debbarma, L. C. Saikia, N. Sinha, B. Kar, and A. Datta: Fractional order two degree of freedom control for AGC of an interconnected multi-source power system, in Industrial Technology (ICIT), 2016 IEEE International Conference on. IEEE, 2016, pp. 505-510.
  • [14] S. Debbarma, L. C. Saikia, and N. Sinha: Automatic generation control using two degree of freedom fractional order PID controller, International Journal of Electrical Power & Energy Systems, 58 (2014), 120-129.
  • [15] F. Padula and A. Visioli: Set-point weight tuning rules for fractional order PID controllers, Asian Journal of Control, 15(3) (2013), 678-690.
  • [16] H. Rasouli and A. Fatehi: Design of set-point weighting Pλ + Dμ controller for vertical magnetic flux controller in Damavand tokamak, Review of Scientific Instruments, 85(12) (2014), p. 123-508.
  • [17] M. Li, P. Zhou, Z. Zhao, and J. Zhang: Two-degree-of-freedom fractional order-PID controllers design for fractional order processes with dead-time, ISA transactions, 61 (2016), 147-154.
  • [18] Z. Li, L. Liu, S. Dehghan, Y. Chen, and D. Xue: A review and evaluation of numerical tools for fractional calculus and fractional order controls, International Journal of Control, 90(6) (2017), 1165–1181, DOI:10.1080/00207179.2015.1124290.
  • [19] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle: Fractional-order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media, 2010.
  • [20] E. C. De Oliveira and J. A. Tenreiro Machado: A review of Definition for Fractional Derivatives and Integral, math. Probl. Eng., 2014.
  • [21] I. Petráš: Tuning and implementation methods for fractional-order controllers, Fractional Calculus and Applied Analysis, 15(2) (2012), 282-303.
  • [22] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh: A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70.
  • [23] D. Cafanga: Fractional calculus: A mathematical tool from the past for present engineers [Past and present], IEEE Industrial Electronics Magazine, 1(2) (2007), 35-40.
  • [24] J. Wang, G. Yang, B. Zhang, Z. Sun, Y. Liu, and J. Wang: Convergence analysis of Caputo-type fractional order complex-valued neural networks, IEEE Access, 5 (2017), 14560–14571, DOI: 10.1109/ACCESS.2017.2679185.
  • [25] B. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu: Some approximations of fractional order operators used in control theory and applications, Fractional calculus and applied analysis, 3(3) (2000), 231-248.
  • [26] D. Valério, J. J. Truijllo, M. Rivero, J. T. Machado, and D. Balenau: Fractional calculus: A survey of useful formulas, The European Physical Journal Special Topics, 222(8) (2013), 1827-1846.
  • [27] A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, and F. Dancla: The CRONE toolbox for MATLAB, in Computer-Aided Control System Design, 2000. CACSD 2000. IEEE International Symposium on, IEEE, 2000, pp. 190-195.
  • [28] I. Petras: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, 2011.
  • [29] D. Xue, Y. Chen, and D. P. Atherton: Linear feedback control: analysis and design with MATLAB, SIAM, 2007.
  • [30] K. J. Åström and T. Hägglund: PID Controllers: Theory, Design, and Tuning. ISA Research Triangle Park, NC, 1995.
  • [31] A. Visioli: Practical PID Control, Springer Science & Business Media, 2006.
  • [32] R. Vilanova and A. Visioli: PID Control in the Third Millenium: Lessons Learned and New Approaches, Springer, 2012.
  • [33] S. Skogestad: Simple analytic rules for model reduction and PID controller tuning, Journal of process control, 13(4) (2003), 291-309.
  • [34] K. J. Åström and T. Hägglund: Advanced PID Control. ISA-The Instrumentation, Systems and Automation Society, 2006.
  • [35] N. Kanagaraj, P. Sivashanmugam, and S. Paramasivam: Fuzzy coordinated PI controller: application to the real-time pressure control process, Advances in Fuzzy Systems, 8 (2008), p. 2.
  • [36] S. W. Sung, J. Lee, and I.-B. Lee: Process identification and PID control, John Wiley & Sons, 2009.
  • [37] X. Gao, C. Shang, D. Huang, and F. Yang: A novel approach to monitoring and maintenance of industrial PID controllers, Control Engineering Practice, 64 (2017), 111-126.
  • [38] I. Boiko: Variable-structure PID controller for level process, Control Engineering Practice, 21(5) (2013), 700-707.
  • [39] C.-C. Yu: Autotuning of PID controllers: A relay feedback approach, Springer Science & Business Media, 2006.
  • [40] T. Liu and F. Gao: Industrial process identification and control design: step-test and relay-experiment-based methods. Springer Science & Business Media, 2011.
  • [41] I. Rusnak: Family of the PID Controllers, Introduction to PID Controllers - Theory, Tuning and Application to Frontier Areas, InTech, 2012.
  • [42] T. Hägglund: Signal filtering in PID control, IFAC Proceedings Volumes, 45(3) (2012), 1-10.
  • [43] V. R. Segovia, T. Hägglund, and K. J. Åström: Measurement noise filtering for PID controllers, Journal of Process Control, 24(4) (2014), 299-313.
  • [44] T. Hägglund: A unified discussion on signal filtering in PID control, Control engineering practice, 21(8) (2013), 994-1006.
  • [45] K. K. Tan, Q.-G. Wang, and C. C. Hang: Advances in PID control. Springer Science & Business Media, 2012.
  • [46] H. S. Sánchez and R. Vilanova: Optimality comparison of 2DoF PID Implementations, in System Theory, Control and Computing (ICSTCC), 2014 18th International Conference, IEEE, 2014, pp. 591-596.
  • [47] V. M. Alfaro, R. Vilanova, and O. Arrieta: Considerations on set point weight choice for 2-DoF PID controllers, IFAC Proceedings Volumes, 42(11) (2009), 721-726.
  • [48] A. Visoli: Adaptive tuning of fuzzy set-point weighting for PID controllers, IFAC Proceedings Volumes, 33(4) (2000), 455-460.
  • [49] R. K. Sahu, S. Panda, and U. K. Rout: DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity, International Journal of Electrical Power & Energy Systems, 49 (2013), 19-33.
  • [50] R. Mantz: A PI controller with dynamic set-point weighting for nonlinear processes, IFAC Proceedings Volumes, 45(3) (2012), 512-517.
  • [51] L. Musmade and M. Chidambarm: Learning Automata based Setpoint weighted parameter for unstable systems, IFAC Proceedings Volumes, 47(1) (2014), 122-126.
  • [52] A. Ghosh, T. R. Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, and S. Ranasingh: Design and implementation of a 2-DOF PID compensation for magnetic levitation systems, ISA transactions, 53(4) (2014), 1216-1222.
  • [53] Q. Jin and Q. Liu: Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof, Journal of Process Control, 24(3), (2014), 22-32.
  • [54] V. Rajinikanth and K. Latha: Setpoint weighted PID controller tuning for unstable system using heuristic algorithm, Archives of Control Sciences, 22(4) (2012), 481-505.
  • [55] A. Denghani and A. Lanzon: Discussion on: “2-DOF Controller Design for Precise Positioning a Spindle Levitated with Active Magnetic Bearings”, European Journal of Control, 18(2) (2012), 207-209.
  • [56] A. Rodriguez-Martinez and R. Garduno-Ramirez: 2 DOF fuzzy gain-Scheduling PI for combustion turbogenerator speed control, IFAC Proceedings Volumes, 45(3) (2012), 276-281.
  • [57] N. Pachauri, V. Singh, and A. Rani: Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production, ISA transactions, 68 (2017), 235-250.
  • [58] R. K. Mudi and C. Dey: Performance improvement of PI controllers through dynamic set-point weighting, ISA transactions, 50(2) (2011), 220-230.
  • [59] F. D. Bianchi, R. J. Mantz, and C. F. Christiansen: Multivariable PID control with set-point weighting via BMI optimisation, Automatica, 44(2) (2008), 472-478.
  • [60] R. K. Sahu, S. Panda, U. K. Rout, and D. K. Sahoo: Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller, International Journal of Electrical Power & Energy Systems, 77 (2016), 287-301.
  • [61] V. Alfaro, R. Vilanova, and O. Arrieta: Robust tuning of two-degree-of-freedom (2-DoF) PI/PID based cascade control systems, Journal of process control, 19(10) (2009), 1658-1670.
  • [62] M. Viteckova and A. Vitecek: 2DOF PI and PID controllers tuning, IFAC Proceedings Volumes, 43(2) (2010), 343-348.
  • [63] G. J. Silva, A. Datta, and S. P. Bhattacharyya: PID Controllers for Time-Delay Systems, Springer Science & Business Media, 2007.
  • [64] J. E. Normey-Rico: Control of dead-time processes, Springer Science & Business Media, 2007.
  • [65] A. Visioli and Q. Zhong: Control of integral processes with dead time, Springer Science & Business Media, 2010.
  • [66] K. J. Aström and R. M. Murray: Feedback systems: an introduction for scientists and engineers, Princeton University press, 2010.
  • [67] K. G. Papadopoulos: PID Controller Tuning Using the Magnitude Optimum Criterion, Springer, 2015.
  • [68] S. K. Swain, D. Sain, S. K. Mishra, and S. Ghosh: Real Time Implementation of Fractional Order PID Controllers for a Magnetic Levitation Plant, AEU-International Journal of Electronics and Communictions, 2017.
  • [69] I. Petrás: Fractional derivatives, fractional integrals, and fractional differentia equations in MATLAB, in Engineering Education and Research Using MATLAB, InTech, 2011.
  • [70] D. Valério and J. Sá Da Costa: An Introduction to fractional control, Institution of Engineering and Technology, 2013.
  • [71] C. I. Muresan, E. H. Dulf, and R. Both: Vector-based tuning and experimental validation of fractional-order PI/PD controllers, Nonlinear Dynamics, 84(1) (2016), 179-188.
  • [72] R. De Keyser, C. I. Muresan, and C. M. Ionescu: A novel autotuning method for fractional order PI/PD controllers, ISA transactions, 62 (2016), 268-275.
  • [73] P. Roy, B. Kar, and B. K. Roy: Fractional Order PI-PD Control of Liquid Level in Coupled Two Tank System and its Experimental Validation, Asian Journal of Control, 19(5) (2017), 1–11, DOI: 10.1002/asjc.1487.
  • [74] Y. Luo and Y. Chen: Fractional order [proportional derivative] controller for a class of fractional order systems, Automatica, 45(10) (2009), 2446-2450.
  • [75] M. Tavakoli-Kakhki and M. Haeri: Fractional order model reduction approach based on retention of the dominant dynamics: Application in IMC based tuning of FOPI and FOPID controllers, ISA transactions, 50(3) (2011), 432-442.
  • [76] T. Vinopraba, N. Sivakumaran, S. Narayanan, and T. Radhakrishnan: Design of internal model control based fractional order PID controller, Journal of Control Theory and Applications, 10(3) (2012), 297-302.
  • [77] C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Chen: Tuning and auto-tuning of fractional order controllers for industry applications, Control engineering practice, 16(7) (2008), 798-812.
  • [78] F. Padula and A. Visioli: Tuning rules for optimal PID and fractional order PID controllers, Journal of process control, 21(1) (2011), 69-81.
  • [79] Y. Su, D. Sun, and B. Duan: Design of an enhanced nonlinear PID controller, Mechatronics, 15(8) (2005), 1005-1024.
  • [80] H.-B. Duan, D.-B. Wang, and X.-F. Yu: Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm, Journal of Bionic Engineering, 3(2) (2006), 73-78.
  • [81] P. Melchior, B. Orsoni, O. Lavialle, and A. Oustaloup: The CRONE toolbox for Matlab: fractional path planning design in robotics, in Robot and Human Interactive Communication, 2001. Proceedings. 10th IEEE International Workshop on, IEEE, 2001, pp. 534-540.
  • [82] R. Malti and S. Victor: Crone toolbox for system identification using fractional differentiation models, IFAC-PapersOnLine, 48(28) (2015), 769-774.
  • [83] D. Valerio and J. S. Da Costa: Ninteger: a non-integer control toolbox for MATLAB, Proceedings of the Fractional Differentiation and its Applications, Bordeaux, 2004.
  • [84] N. Lachhab, F. Svaricek, F. Wobbe, and H. Rabba: Fractional order PID controller (FOPID)-toolbox, in Control Conference (ECC), 2013 European, IEEE, 2013, pp. 3694-3699.
  • [85] E. Pisoni, A. Visioli, and S. Dormido: An interactive tool for fractional order PID controllers, in Industrial Electronics, 2009. IECON’09. 35th Annual Conference of IEEE, IEEE, 2009, pp. 1468-1473.
  • [86] A. Tepljakov, E. Petlenkov, and J. Belikov: FOMCON: a MATLAB toolbox for fractional-order system identification and control, International Journal of Microelectronics and Computer Science, 2(2) (2011), 51-62.
  • [87] A. Tepljakov: Fractional-order calculus based identification and control of linear dynamic systems, Tallinn University of Technology, 2011.
  • [88] A. Tepljakov, E. Petlenkov, and J. Belikov: Fomcon: Fractional-order modeling and control toolbox for matlab, in Mixed Design of Integrated Circuits and Systems (MIXDES), 2011 Proceedings of the 18th International Conference, IEEE, 2011, pp. 684-689.
  • [89] R. Caponetto: Fractional Order Systems: Modeling and Control Applications, World Scientific, 2010, vol. 72.
  • [90] J. Sabatier, O. P. Agrawal, and J. T. Machado: Advances in fractional calculus, Springer, 2007, vol. 4, no. 9.
  • [91] D. Balenau, J. A. T. Machado, and A. C. Luo: Fractional Dynamics and Control, Springer Science & Business Media, 2011.
  • [92] I. Pan and S. Das: Intelligent Fractional Order Systems and Control: An Introduction, Springer, 2012, vol. 438.
  • [93] D. Xue Fractional-Order Control Systems: Fundamentals and Numerical Implementations,Walter de Gruyter GmbH & Co KG, 2017, vol. 1.
  • [94] A. J. Michael and H. M. Mohammad: PID Control: New Identification and design methods, 2005.
  • [95] H. Taguchi and M. Araki: Two-degree-of-freedom PID controllers-their functions and optimal tuning, IFAC Proceedings Volumes, 33(4) (2000), 91-96.
  • [96] J. Sánchez, A. Visioli, and S. Dormido: A two-degree-of-freedom PI controller based on events, Journal of Process Control, 21(4) (2011), 639-651.
  • [97] R. Gorez: New design relations for 2-DOF PID-like control systems, Automatica, 39(5) (2003), 901-908.
  • [98] F. Padula and A. Visioli: Set-point filter design for a two-degree-of-freedom fractional control system, IEEE/CAA Journal of Automatica Sinica, 3(4) (2016), 451-462.
  • [99] P. Padhy and S. Majhi: Relay based PI–PD design for stable and unstable FOPDT processes, Computers & Chemical Engineering, 30(5) (2006), 790-796.
  • [100] A. Visioli: Optimal tuning of PID controllers for integral and unstable processes, IEE Proceedings-Control Theory and Applications, 148(2) (2001), 180-184.
  • [101] G. Prashanti and M. Chidambaram: Set-point weighted pid controllers for unstable systems, Journal of the Franklin Institute, 337(2) (2000), 201-215.
  • [102] C.-C. Chen, H.-P. Huang, and H.-J. Liaw: Set-point weighted PID controller tuning for time-delayed unstable processes, Industrial & Engineering Chemistry Research, 47(18) (2008), 6983-6990.
  • [103] R. P. Sree and M. Chidambaram: Simple method of calculating set point weighting parameter for unstable systems with a zero, Computers & Chemical Engineering, 28(11) (2004), 2433-2437.
Uwagi
EN
1. This research was supported by Universiti Teknologi PETRONAS (UTP) through the Award of Yayasan UTP Fundamental Research under Grant No: 0153AA-H16.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd138f67-154c-47fd-af5e-f5bd56059996
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.