Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sanitary manhole covers, such as infrastructure lines, drainage, and stormwater, are important in drainage systems. In recent years, there have been intensive attempts to improve the performance of these covers and reduce their costs. This study investigates the mechanical behaviour and load-bearing capacity of polypropylene manhole covers modified by two methods. In the first modification, covers were strengthened by injecting ribs composed of 15 wt.% and 30 wt.% glass fibres. In the second modification, a steel spiral rod was installed along the circumference of the cover. Compression tests were conducted using a universal testing machine equipped with ZwickRoell Xforce load cells to evaluate the effectiveness of these modifications. Contrary to expectations, the results showed a 12.36 kN average decrease in the cover load capacity when there was a 15 wt.% content of glass fibers, indicating a 13.46% weakening compared to the traditional version of pure polypropylene. In contrast, the variant with a 30 wt.% filler content exhibits a 19.31 kN decrease in load-bearing capacity, resulting in a 21.03% weakening compared to the pure polypropylene cover. When the spiral steel rod was added, the result was a significant reduction in the circumferential rib's cross-sectional area, leading to cracking with an average force value of 86.21 kN. This was lower than the load capacity of the variant without a bar, which was 91.82 kN.
Wydawca
Rocznik
Tom
Strony
20--31
Opis fizyczny
Bibliogr. 29 poz., fig.
Twórcy
autor
- Mechanical Department, Engineering College, University of Basrah, Basrah 61004, Iraq
autor
- Mechanical Department, Engineering College, University of Basrah, Basrah 61004, Iraq
autor
- Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
autor
- Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
autor
- Mechanical and Electrical Engineering Department, Polish Naval Academy, 81-103 Gdynia, Poland
Bibliografia
- 1. Cox J. C. Why are manhole covers round? Or understanding basic coastal design, in Solutions to Coastal Disasters 2005 - Proceedings of the Conference, 2005. https://doi.org/10.1061/40774(176)54.
- 2. Nghia H. T., Thang N. C., Van Tuan N., Hung C. V., Yang K. H., and Dong P. S. Experimental study to produce manhole cover using ultra-high performance concrete. International Journal of GEOMATE, 2021, 21(85), https://doi.org/10.21660/2021.85.j2244.
- 3. Mikelj M., Nagode M., Klemenc J., and Šeruga D. Influence of operating conditions on a cast-iron manhole cover. Technologies (Basel), 2022, 10(6), https://doi.org/10.3390/technologies10060127.
- 4. Kurdziel J. M. Performance of polypropylene corrugated pipe in North America, in Pipelines 2015: Recent Advances in Underground Pipeline Engineering and Construction - Proceedings of the Pipelines 2015 Conference, 2015. https://doi.org/10.1061/9780784479360.034.
- 5. Ishitsuka K., Kawakami M., Kuwahara Y., and Kai N. Performance of manhole under severe condition in Japan. ce/papers, 2023, 6(6), https://doi.org/10.1002/cepa.2959.
- 6. Mankotia A., and Shukla A. K. IOT based manhole detection and monitoring system using Arduino. Mater Today Proc, 2022, https://doi.org/10.1016/j.matpr.2021.12.264.
- 7. Khalaf H. I., Al-Sabur R., Kubit A., Święch Ł., Żaba K., and Novák V. Experimental investigation of load-bearing capacity in EN AW-2024-T3 aluminum alloy sheets strengthened by SPIF-fabricated stiffening rib. Materials, Apr. 2024; 17(8), 1730, https://doi.org/10.3390/ma17081730.
- 8. Kubit A., Al-Sabur R., Gradzik A., Ochał K., Slota J., and Korzeniowski M. Investigating residual stresses in metal-plastic composites stiffening ribs formed using the single point incremental forming method. Materials, Nov. 2022, 15(22), 8252, https://doi.org/10.3390/ma15228252.
- 9. Al-Sabur R., Kubit A., Khalaf H., Jurczak W., Dzierwa A., and Korzeniowski M. Analysis of surface texture and roughness in composites stiffening ribs formed by SPIF process. Materials, Apr. 2023, 16(7), 2901, https://doi.org/10.3390/ma16072901.
- 10. Abbas A., Ruddock F., Alkhaddar R., Rothwell G., and Andoh R. Improving the geometry of manholes designed for separate sewer systems. Canadian Journal of Civil Engineering, 2019, 46(1), https://doi.org/10.1139/cjce-2018-0057.
- 11. Abbas A., Ruddock F., Alkhaddar R., Rothwell G., and Andoh R. Impact of the external surface area of a manhole on the behaviour of a manhole structure buried in the sand, in World Environmental and Water Resources Congress 2018, Reston, VA: American Society of Civil Engineers, May 2018, 288–296. https://doi.org/10.1061/9780784481431.029.
- 12. Entezarmahdi A., Najafi M., and Sever F. Testing and analysis of no-dig structural manhole rehabilitation materials, in Pipelines 2014: From Underground to the Forefront of Innovation and Sustainability - Proceedings of the Pipelines 2014 Conference, 2014. https://doi.org/10.1061/9780784413692.153.
- 13. Kaushal V., Najafi M., and Entezarmahdi A. Testing, analysis and classification of no-dig manhole rehabilitation materials. Frontiers in Water, 2021, 3, https://doi.org/10.3389/frwa.2021.713817.
- 14. Sakhakarmi S., Shrestha P., and Batista J. Life-cycle cost comparison of cement concrete and polymer concrete manholes used in sewer systems, in Construction Research Congress 2018: Sustainable Design and Construction and Education - Selected Papers from the Construction Research Congress 2018, 2018. https://doi.org/10.1061/9780784481301.050.
- 15. Goff S., Trim M., Grattidge J., Ager M., Clarke B., and Rivalland J. The use of glass-fibre reinforced plastic on the Northern Sewerage Project stage 1 - Design and construction considerations, in 14th Australasian Tunnelling Conference 2011: Development of Underground Space, Proceedings, 2011.
- 16. Royer J. R. Geopolymer lining of corroded reinforced concrete sanitary sewer pipes. Mater Perform, 2019, 58(5).
- 17. Royer J. R. Geopolymer lining of corroded reinforced concrete sanitary sewer pipes, in NACE - International Corrosion Conference Series, 2019.
- 18. Sun J., Wang K., Yang H., and Yang Z. Glass fiber reinforced plastic mortar pipe sewers temperature-proof leakage construction technology, in ICPTT 2013: Trenchless Technology - The Best Choice for Underground Pipeline Construction and Renewal, Proceedings of the International Conference on Pipelines and Trenchless Technology, 2013. https://doi.org/10.1061/9780784413142.035.
- 19. Itu C., Cerbu C., and Galatanu T. F. Modeling and testing of the sandwich composite manhole cover designed for pedestrian networks. Materials, 2019, 12(7), https://doi.org/10.3390/ma12071114.
- 20. Bhopatrao S., and Kewate S. Manufacturing of sustainable manhole covers designed for pedestrian networks, in AIP Conference Proceedings, 2023. https://doi.org/10.1063/5.0189456.
- 21. Barros J. A. O., Soltanzadeh F., de Sousa C., and Vera M. O. Development of sustainable and innovative manhole covers in fibre-reinforced concrete and GFRP grating. Applied Sciences, Aug. 2024, 14(16), 6903, https://doi.org/10.3390/app14166903.
- 22. Zhang S., and Norato J. A. Optimal design of panel reinforcements with ribs made of plates. Journal of Mechanical Design, 2017, 139(8), https://doi.org/10.1115/1.4036999.
- 23. Wang Y., Kong L., Chen Q., Lau B., and Wang Y. Research and application of a black rapid repair concrete for municipal pavement rehabilitation around manholes. Constr Build Mater, 2017, 150, https://doi.org/10.1016/j.conbuildmat.2017.05.173.
- 24. Zhao Q., Wang X., Liuet Z., et al. Failure mechanism analysis of the pavement around manholes in urban roads by a vibration model of truck-manhole cover. Journal of Vibration Engineering and Technologies, 2024, 12(1), https://doi.org/10.1007/s42417-022-00833-0.
- 25. Zhong G. J., and Li Z. M. Injection molding-induced morphology of thermoplastic polymer blends. Polym Eng Sci, 2005, 45(12), https://doi.org/10.1002/pen.20448.
- 26. Hatami Jorbat M., Hosseini M., and Mahdikhani M. Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete. Theoretical and Applied Fracture Mechanics, 2020, 109, https://doi.org/10.1016/j.tafmec.2020.102723.
- 27. Komeili A., Chau W., and Herzog W. Effects of macro-cracks on the load bearing capacity of articular cartilage. Biomech Model Mechanobiol, 2019, 18(5), https://doi.org/10.1007/s10237-019-01149-x.
- 28. Várdai R., Lummerstorfer T., Pretschuh C., et al. Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms. Compos Part A Appl Sci Manuf, 2020, 133, https://doi.org/10.1016/j.compositesa.2020.105895.
- 29. Fang H., Iqbal N., Van Staen G., and De Backer H. Experimental and numerical investigation of stress concentration at rib-to-crossbeam joint. International Journal of Steel Structures, 2021, 21(1), https://doi.org/10.1007/s13296-020-00443-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0ec46d-4bf5-4574-89cb-caebee4189bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.