PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementing SimulationX in the modelling of marine shafting steady state torsional vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Marine propulsion shafting systems are exposed to torsional vibrations originating from excitations in their prime movers and propellers. It is essential to analyse their steady state response in the earliest stage of ship design. The paper describes the implementation of SimulationX software based upon simulation modelling for these calculations. This software can be used either by the design office of the shipyard or by the classification society for verification within the plan approval phase. Some specifics of the input data preparation are briefly discussed. In addition, the simulation results depend on the modelling approach chosen. For these reasons, the real two-stroke Diesel engine ship propulsion system was chosen and several different models were implemented for system modelling. SimulationX calculation results are compared with those of two well-known and field-proven programs that use an analytical approach. Finally, the results are compared with the measurements performed on the actual newly built ship. Discussion reviews the selected SimulationX model, and its verification and validation in the case of engine cylinders with normal ignition.
Rocznik
Tom
Strony
63--71
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Faculty of Maritime Studies Boškovićeva 37 HR21000 Split Croatia
  • Faculty of Maritime Studies Boškovićeva 37 HR21000 Split Croatia
  • Faculty of Maritime Studies Boškovićeva 37 HR21000 Split Croatia
  • Faculty of Maritime Studies Boškovićeva 37 HR21000 Split Croatia
Bibliografia
  • 1. Croatian Register of Shipping, “Rules for the Classification of Ships, Part 7-Machinery Installation (Amd 1, 2021),” Croatian Register of Shipping, 2021. [Online]. Available: http://www.crs.hr/en-us/links/rulesfortheclassification. aspx. [Accessed: April 15th, 2021].
  • 2. International Association of Classification Societies, “UR M68 Dimensions of propulsion shafts and their permissible torsional vibration stresses (Rev. 2, April 2015),” International Association of Classification Societies, 2015. [Online]. Available: https://www.iacs.org.uk /publications/ unified-requirements/ur-m/ur-m68-rev2-cln/. [Accessed: April 15th, 2021]
  • 3. Y. Batrak, “Torsional vibration calculation issues with propulsion systems,” SKF Solution Factory-Marine Services-Shaft Designer, 2010. [Online]. Available: http:// www. shaftdesigner.com/support/papers.html. [Accessed: April 15th, 2021]
  • 4. W. K. Wilson, “Practical Solution of Torsional Vibration Problems, 3rd edition,” London: Chapman & Hall Ltd, 1963.
  • 5. Lloyd’s Register of Shipping, “Rules and Regulations for the Classification of Ships, Part 5 - Main and Auxiliary Machinery,” London: Lloyd’s Register of Shipping, 1968.
  • 6. M. Butković, and Z. Jeličić, “Computer calculation of torsional vibrations for oil engine installations,” Technical Information of Jugoturbina, vol. 2-4, pp. 26-35, 1969. 7. K. E. Hafner, and H. Maass, “Torsionschwingungen in der Verbrennungs-kraftmaschine,” Wien: Springer-Verlag, 1985.
  • 8. G. Magazinović, “User’s manual for TorViC v1.1: A computer system for propulsion system torsional vibration analysis,” Split: CADEA, 2000.
  • 9. G. Magazinović, “Propulsion system forced torsional vibration calculation,” Shipyard Brodosplit, Split, Tech. Rep. 85N11706, 1988.
  • 10. G. Magazinović, “Shaftline design considerations of fivecylinder low-speed propulsion plants,” in Proceedings I. of 13th Symposium on Theory and Practice of Shipbuilding Sorta’98, In memoriam prof. Leopold Sorta, 1998. pp. 141-151.
  • 11. I. Senjanović, I. Ančić, G. Magazinović, N. Alujević, N. Vladimir, and D. S. Cho, “Validation of analytical methods for the estimation of the torsional vibrations of ship power transmission systems,” Ocean Engineering, vol. 184, pp. 107–120, 2019.
  • 12. L. Murawski and A. Charchalis, “Simplified method of torsional vibration calculation of marine power transmission system,” Marine Structures, vol. 39, pp. 335- 349, 2014.
  • 13. Verein Deutscher Ingenieure, “VDI 2039 Torsional vibration of drivelines - Calculation, measurement, reduction,” Düsseldorf: Verein Deutscher Ingenieure e.V, 2016.
  • 14. ITI-Software GmbH, “SimulationX Library ManualTorsional Vibration Analysis,” Dresden: ITI-Software GmbH, 2015.
  • 15. J. Huet, “Torsional vibration analysis of marine installations,” Ship & Offshore, no. 5, pp. 18-20, 2011.
  • 16. N. Vulić, Đ. Dobrota and I. Komar, “Damping and excitation in the torsional vibrations calculation of ship propulsion systems,” in Proceedings of the Contemporary Issues in Economy & Technology Conference, CIET 2016, Split, Croatia, 16th-18th June 2016. pp. 165-174.
  • 17. N. Vulić, I. Komar and P. Jurišić, “Selection and evaluation of marine shafting torsional vibrations calculation software,” in Book of Proceedings of the 7th International Maritime Science Conference (IMSC 2017), Split, Croatia, 20th-21st April, 2017. pp. 221-229.
  • 18. E. Sandberg, “Classification rules for torsional vibrations,” Hoevik: Det norske Veritas AS, 2005.
  • 19. MAN Energy Solutions, “Torsional Vibration Calculation Program GTORSI, Version 3.6.4 External,” Copenhagen: MAN Energy Solutions, 2018.
  • 20. M. Kramar, I. Beatović and N. Bobanac, “Shafting Torsional Vibration Test,” Shipbuilding Institute, Zagreb, Croatia, Tech. Rep. A100-LF01-02-071, 1999.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0dd8a8-1fa6-48ca-892a-159d746de8db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.