PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing and structure of HDPE/glassy carbon composite suitable for 3D printing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Właściwości przetwórcze i struktura kompozytów HDPE/węgiel szklisty przeznaczonych do druku 3D
Języki publikacji
EN
Abstrakty
EN
The following paper discusses the studies of high-density polyethylene (HDPE) reinforced with glassy carbon (GC) particles. The conducted research focused on the processing properties of the material. Samples were made from extruded HDPE filament reinforced with GC. The granulate for extrusion was made by depositing GC particles on the surface of HDPE granules in ethylene alcohol. The granulate was subsequently extruded in the form of a filament (1.6 mm in diameter). The filament was cut into smaller pieces, which were then prepared and examined using a light microscope. Density measurements and quantitative analysis were performed to examine the amount of glassy carbon in the samples. The measurements showed about a 1% volume of glassy carbon in the reinforced filament. The melt flow index was measured for the HDPE filament and HDPE filament reinforced with GC. The viscosity curves for the neat HDPE and the composite filament were determined. The reinforced HDPE filament was characterized by slightly lower flow parameters; however, the difference between the results was insignificant for material processing. The maximum feed rate of the prepared filament for the FDM 3D printing process was evaluated by mathematical modeling. The results show that both the prepared materials have a similar printing capability as commonly used PLA, only the composite filament should have a 1.4% lower feed rate than the neat HDPE.
PL
Przedstawiona praca dotyczy wstępnych badań nad polietylenem wysokiej gęstości (HDPE) zbrojonym cząstkami węgla szklistego (GC). Przeprowadzone badania skupiały się wokół struktury oraz właściwości przetwórczych uzyskanego kompozytu. Próbki zostały wytworzone z wytłoczonego filamentu HDPE zawierającego węgiel szklisty. Granulat do wytłaczania został przygotowany poprzez osadzanie cząstek GC na powierzchni granul HDPE w alkoholu etylowym, a następnie po wysuszeniu wytłoczony w postaci filamentu o średnicy ok. 1,6 mm. Przygotowany filament został poddany regranulacji, a następnie poddany obserwacji na mikroskopie świetlnym. Za pomocą pomiarów gęstości oraz analizy obrazu zdjęć z mikroskopu oceniono udział węgla szklistego w osnowie HDPE. Pomiary wykazała udział objętościowy zbrojenia na poziomie 1%. Właściwości przetwórcze zostały ocenione poprzez pomiary MFI oraz wyznaczonych na ich podstawie krzywych lepkości. Kompozytowy filament wykazywał nieznacznie mniejsze płynięcie w porównaniu do bazowego tworzywa. Ostatecznie oceniono maksymalny feed rate w procesie drukowania 3D (FDM) za pomocą modeli analitycznych dla wytworzonych filamentów. Wyniki modelowania pokazują, że oba przygotowane materiały mógłby być drukowane przy podobnych prędkościach jak popularne PLA.
Rocznik
Strony
72--77
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Korol J., Lenza J., Formela K., Manufacture and research of TPS/PE biocomposites properties, Composites Part B - Engineering 2015, 68, 310-316.
  • [2] Bociaga E., Kula M., Kwiatkowski K., Analysis of structural changes in injection-molded parts due to cyclic loading, Advances in Polymer Technology 2018, 37, 2134-2141.
  • [3] Olesik P., Godzierz M., Koziol M., Preliminary Characterization of Novel LDPE-based wear-resistant composite suitable for FDM 3D printing, Materials 2019, 12, 2520.
  • [4] Shekarian E., Khodaverdi F., Tarighaleslami A.H., Morphology, Thermal and mechanical properties of carbon fiber/high density polyethylene (CF/HDPE) composite, Advances in Environmental Biology 2014, 8.
  • [5] Wu H., Fahy W., Kim S., Kim H., Zhao N., Pilato L.,Kafi A., Bateman S., Koo J.H., Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science 2020, DOI: 10.1016/j.pmatsci.2020.100638.
  • [6] Praveen T.A., Sundara Rajan J.A, Sailaja R.R.N., Comparative study of dielectric and mechanical properties of HDPE-MWCNT-SiO2 nanocomposites, Materials Research Bulletin 2016, 83, 294-301.
  • [7] Mohammed H. Al-Saleh, Uttandaraman Sundararaj, Review of the mechanical properties of carbon nanofiber/polymer composites, Composites, Part A 2011, 42, 2126-2142.
  • [8] Latko-Durałek P., Dydek K., Kozera R., Boczkowska A., Effect of functionalized carbon nanotubes on properties of hot melt copolyimide, Composites Theory and Practice 2017, 17(4), 226-231.
  • [9] Johnson B.B., Santare M.H., Novotny J.E., Advani S.G., Wear behavior of carbon nanotube/high density polyethylene composites, Mechanics of Materials 2009, 41, 1108-1115.
  • [10] Koziol M., Jesionek M., Szperlich P., Addition of a small amount of multiwalled carbon nanotubes and flaked graphene to epoxy resin, Journal of Reinforced Plastics and Composites 2017, 36, 640-654.
  • [11] Wong A.C.-Y., Liang J.Z., Temperature and pressure effects on the melt index and melt density of high-density polyethylene, Journal of Materials Processing Technology 1994, 43(2-4), 293-304, DOI: 10.1016/0924-0136(94)90027-2.
  • [12] Wen-Gui Weng, Guo-Hua Chen, Da-Jun Wu, Wen-Li Yan, HDPE/expanded graphite electrically conducting composite, Composite Interfaces 2004, 11(2), 131-143, DOI: 10.1163/156855404322971404.
  • [13] Fouad H., Elleithy R., High density polyethylene/graphite nanocomposites for total hip joint replacements: Processing and in vitro characterization, Journal of the Mechanical Behavior of Domedical Materials 2011, 4, 1376-1383.
  • [14] Santosh S., Nitesh B., Sutanu S., Sreekanth P.S., Dynamic mechanical thermal analysis of high-density polyethylene reinforced with nanodiamond, carbon nanotube and graphite nanoplatelet, Materials Science Forum 2018, 917, DOI: 10.4028/www.scientific.net/MSF.917.27.
  • [15] Gaska K., Xu X., Gubanski S., Kádár R., Electrical,mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process, Polymers 2017, 9, 11.
  • [16] Myalski J., Hekner B., Glassy carbon foams as skeleton reinforcement in polymer composite, Composites Theory and Practice 2017, 17(1), 41-46.
  • [17] Dolata A.J., Dyzia M., Wieczorek J., Tribological properties of single (AlSi7/SiCp, AlSi7/GC(sf)) and hybrid (AlSi7/SiCp + GC(sf)) composite layers formed in sleeves via centrifugal casting, Materials 2019, 12, 2803.
  • [18] Godzierz M., Olszówka-Myalska A., Influence of casting procedure on wear of magnesium matrix composites reinforced with carbon open-celled foam, Composites Theory and Practice 2019, 19(2), 64-70.
  • [19] Olszówka-Myalska A., Godzierz M., Myalski, J., Wrześniowski P., Magnesium matrix composite with open-celled glassy carbon foam obtained using the infiltration method, Metals 2019, 9, 622.
  • [20] Szeluga U., Pusz S., Kumanek B., Myalski J., Hekner B., Tsyntsarski B., Oliwa R., Trzebicka B., Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites, Composites Part A: Applied Science and Manufacturing 2017, 105, DOI: 10.1016/j.compositesa.2017.11.004
  • [21] Posmyk A., Myalski J., Using composite coatings containing solid lubricants to minimize friction in piston combustion engines for aviation, Composites Theory and Practice 2019, 19(1), 3-6.
  • [22] Posmyk A., Myalski J., Composite coatings including solid lubricants designed for aviation, Composites Theory and Practice 2018, 18(1), 3-6.
  • [23] https://www.plasticstoday.com/injection-molding/materials-analyst-part-69-density-bulk-density-melt-density-and-specific-gravity-web-exclusive/7232870583067 [13.04.2020].
  • [24] Serdeczny M.P., Comminal R., Pedersen D.B., Spangenberg J., Experimental and analytical study of the polymer melt flow through the hotend in material extrusion additive manufacturing, Additive Manufacturing 2020, 32, 100997, DOI: 10.1016/j.addma.2019.100997.
  • [25] Nienhaus V., Smith K., Spiehl D., Dörsam E., Investigations on nozzle geometry in fused filament fabrication, Additive Manufacturing 2019, 28 711-718, DOI: 10.1016/j.addma.2019.06.019.
  • [26] Osswald T., Puentes J., Kattinger J., Fused filament fabrication melting model, Additive Manufacturing 2018, 22, DOI: 10.1016/j.addma.2018.04.030.
  • [27] Bellini A., Güçeri S., Bertoldi M., Liquefier dynamics infused deposition, Journal of Manufacturing Science and Engineering - Transactions of The ASME - J. Manuf. Sci. Eng. 2004, 126, DOI: 10.1115/1.1688377.
  • [28] Go J., Schiffres S.N., Stevens A.G., Hart A.J., Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design, Additive Manufacturing 2010, DOI: 10.1016/j.addma.2017.03.007.
  • [29] Rudin A., Choi P., The Elements of Polymer Science & Engineering (Third Edition): Chapter 4 - Mechanical Properties of Polymer Solids and Liquids, Elsevier, 2013.
  • [30] Földes E., Keresztury G., Iring M., Tüdős F., Crystallinity of polyethylene measured by density, DSC, and raman spectroscopy. A comparison, Die Angewandte Makromolekulare Chemie 1991, 187(1), 87-99.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0b8adb-ee71-486c-9e4a-258e00bf7810
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.