PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on homogeneity and repeatability of single-piece flow carburizing system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper was to determine the homogeneity and replicability of carburized layers obtained by a continuous single-piece flow method. Design/methodology/approach: A series of 100 gears was carburized under low pressure atmosphere using the single-piece flow method. The microstructures of the obtained carbon layers were investigated. Hardness penetration pattern and carbon concentration profiles were tested. Findings: The findings have shown the validity/correctness of the microstructures of the carburized layers obtained by the single-piece flow method. It has been proved that the carbon layer in every gear is uniform, what confirms that each element is affected by the same process conditions and the gears in the whole series can be precisely reproduced. Research limitations/implications: The short-pulse low-pressure carburizing technology needs further investigation to understand its all mechanisms fully. Practical implications: The single-piece flow method provides the uniform and reproducible carburized layers with the precision magnitude exceeding the abilities of currently used thermo-chemical furnaces. When applying the method it is possible to obtain a uniform carburized case in every single gear from the whole series of elements subjected to the process. Optimized configuration of process parameters and carbon-carrying mixture allows to meet the high expectations of a modern and future industry, what is most crucial in exploiting carburized steel gears. Originality/value: The applicability of the LPC single-piece flow method to a demanding mass production has been verified. The statistical validity of research results of the whole manufactured series of gears is being performed for the first time.
Rocznik
Strony
68--75
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • SecoWarwick, ul. Zachodnia 76, 66-200 Świebodzin, Poland
  • Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] E. Gronquist , V. Scotto, D. Taft, H. Western, Hayes Inc., assignee. Method of vacuum carburizing. Unites State patent US, 1974 Mar 12., US 3,796,615, 1974.
  • [2] D.H. Herring, Vacuum heat treatment. Principles Practices Applications, BNP Media II, Troy, 2012.
  • [3] V.S. Krylov, V.A. Yumatov, V.V. Kurbatov, USSR 668978, 1977.
  • [4] K. Kubota, Vacuum carburizing method and device, and carburized products, US 5,702,540, 1997.
  • [5] R.P. Poor, G.W. Barbee, S.H. Verhoff, J.E. Brugg, Furnace for vacuum carburizing with unsaturated aromatic hydrocarbons, 7,267,793, 2007.
  • [6] P. Kula, J. Olejnik, P. Heilman, Method for under-pressure carburizing of steel workpieces, EU 1 558 781, 2006. http://www.google.com/patents/US20060016525 (accessed June 4, 2017).
  • [7] P. Kula, J. Olejnik, P. Heilman, Hydrocarbon gas mixture for the under-pressure carburizing of steel, EU 1 558 780, 2007.
  • [8] W.R. Janes, Varsatile high velocity integral vacuum furnace, US 7,514,035, 2009.
  • [9] P. Kula, J. Olejnik, P. Heilman, Method for under-pressure carburizing of steel workpieces, 7,550,049, 2009.
  • [10] P. Kula, J. Olejnik, P. Heilman, Hydrocarbon gas mixture for the under-pressure carburizing of steel, 7,513,958, 2009.
  • [11] P. Rokicki, K. Dychton, Acetylene flow rate as a crucial parameter of vacuum carburizing process of modern tool steels, Archives of Metallurgy and Materials 61/4 (2016)J 2009-2012.
  • [12] S.N. Tsepov, Characteristic features of carburizing of steel during vacuum carburizing, Metal Science and Heat Treatment 21/8 (1979) 633-638.
  • [13] P. Kula, R. Piertasik, K. Dybowski, Vacuum carburizing – process optimization, Journal of Materials Processing and Technology 164-165 (2005) 876-881.
  • [14] O. Karabelchtchikova, R.D. Sisson, calculation of gas carburizing kinetics from carbon concentration profiles based on direct flux integration, Defect and Diffusion Forum 266 (2007) 171-180.
  • [15] R. Gorockiewicz, The kinetics of low-pressure carburizing of alloy steels, Vacuum 86 (2011) 448-451.
  • [16] K. Tanaka, H, Ikehata, H. Takamiya, H. Mizuno, Calculation of microstructure In vacuum carburizing incorporating kinetics modeling of grain-boundary cementite, ISIJ International 52/1 (2012) 134-139.
  • [17] A. Ochsner, J. Gegner, G. Mishuris, Effect of diffusivity as a function of the method of computation of carbon concentration profiles in steel, Metal Science and Heat Treatment 46/3-4 (2004) 148-151.
  • [18] E. Wołowiec, P. Kula, Ł. Kolodziejczyk, K. Dybowski, M. Korecki, Mathematical modelling of the vacuum carburizing process, Thermal Processing for Gear Solutions 3-4 (2014) 34-40.
  • [19] F. Chen, L. Liu, Deep-hole carburizing in a vacuum furnace by forced convection gas flow method, Materials Chemistry and Physics 82/3 (2003) 801-807.
  • [20] K. Widanka, Effect of phosphorus on vacuum carburizing depth of iron compacts, Archives of Civil and Mechanical Engineering 10/1 (2010) 85-91.
  • [21] P. Kula, Ł. Kaczmarek, K. Dybowski, R. Pietrasik, M. Krasowski, Activation of carbon deposit in the process of vacuum carburizing with preliminary nitriding, Vacuum 87 (2013) 26-29.
  • [22] A. Rzepkowski, A. Rzepkowski, P. Kula, Vacuum carburized layers examinations of ISO 2639 standard, Acta Metallurgica Slovaca 1 (2004) 730-733.
  • [23] S.A. Azis, I. Jauhari, N.W. Ahamad, Improving surface properties and wear behaviors of duplex stainless steel via pressure carburizing, Surface Coatings and Technology 210 (2012) 142-150.
  • [24] M. Korecki, P. Kula, E. Wołowiec, M. Bazel, M. Sut, Low pressure carburizing and nitriding of fuel injection nozzles, Heat Treatment Reprots 3 (2014) 59-62.
  • [25] S. Carey, D.H. Herring, Low-pressure carburizing process development of M50 NiL, Heat Treatment Progress 5-6 (2007) 43-46.
  • [26] S. Wei, G. Wang, X. Zhao, X. Zhang, Y. Rong, Experimental Study on Vacuum Carburizing Process for Low-Carbon Alloy Steel, Journal of Materials Engineering and Performance 23/2 (2014) 545-550. doi: 10.1007/s11665-013-0762-1.
  • [27] M.Y. Semenov, Control of heat-resistant steel carburized layer surface. Part I, Metal Science and Heat Treatment 55/5-6 (2013) 257-264.
  • [28] P. Kula, K. Dybowski, E. Wołowiec, R. Pietrasik, Boost-diffusion vacuum carburizing – process optimization, Vacuum 99 (2014) 175-179.
  • [29] V.M. Osterman, T. Jones, Carburizing for our troops, Industrial Heating 5 (2006) 53-55.
  • [30] A.G. Goncharov, R.P. Uvarova, Mechanical properties of steels after vacuum and gas carburizing, Metal Science and Heat Treatment 32 (1990) 321-325.
  • [31] D. Kim, Y. Cho, S. Kim, W. Lee, M. Lee, H. Han, A numerical model for vacuum carburization of an automotive gear ring, Metal and Materials International 17/6 (2011) 885-890.
  • [32] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2017) 175-183.
  • [33] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72 (2017) 175-183.
  • [34] M. Korecki, J. Olejnik, Z. Szczeba, M. Bazel, Single-chamber HPGQ Vacuum Furnace with Quenching Efficiency Comparable to Oil, Industrial Heating 9 (2009) 73-77.
  • [35] P. Kula, R. Atraszkiewicz, E. Wołowiec, Modern gas quenching chamber supported by SimVaC Plus Hardness application, Industrial Heating 3 (2008) 55-58.
  • [36] D.S. MacKenzie, Z. Li, B.L. Ferguson, Effect of quenchant flow on the distortion of carburized automotive pinion gears, HTM Journal of Heat Treatment and Materials 63 (2008) 15-21. doi: 10.3139/105.100445.
  • [37] D.S. MacKenzie, A. Kumar, H. Metwally, S. Paingankar, Z. Li, B.L. Ferguson, Prediction of Distortion of Automotive Pinion Gears during Quenching Using CFD and FEA, ASTM International 6 (2009) 1-10.
  • [38] M. Korecki, E. Wołowiec-Korecka, D. Glenn, Single-piece, high-volume, low-distortion case hardening of gears, Proceedings of the AGMA Fall Technology Meeting 2015, AGMA, Detroit, 2015, 1-9.
  • [39] M. Korecki, P. Kula, J. Olejnik, New Capabilities in HPGQ Vacuum Furnaces, Industrial Heating 3 (2011). http://www.industrialheating.com/articles/89834-new- capabilities-in-hpgq-vacuum-furnaces?v=preview (accessed June 2, 2017).
  • [40] V. Heuer, K. Loser, G. Schmitt, K. Ritter, One Piece Flow: Integration of Case Hardening into the Manufacturing Line, Proceedings of the Conference Gears 2010, TUM Garching, 2010.
  • [41] IHI, In-Line Heat Treatment – Next Generation Heat Treatment Equipment, IHI Engineering Review 44 (2011).
  • [42] K. Jakubowski, L. Klimek, A. Rzepkowski, A. Rzepkowski, The methodology of testing of surface layers technological parameters obtained during diffusion treatments. Part I, Materials Engineering 27 (2006) 407-410.
  • [43] A.K. Rakhit, Heat treatment of gears: a practical guide for engineers, ASM International, Materials Park, OH, 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0b62c2-349a-410f-bd36-2ea2153f11c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.