PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2024 Snook Prize Problem: Ergodic Algorithms’ Mixing Rates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1984 Shuichi Nosé invented an isothermal mechanics designed to generate Gibbs’ canonical distribution for the coordinates {q} and momenta {p} of classical N-body systems [1, 2]. His approach introduced an additional timescaling variable s that could speed up or slow down the {q, p} motion in such a way as to generate the Gaussian velocity distribution ∝ e −p 2/2mkT and the corresponding potential distribution, ∝ e −Φ(q)/kT . (For convenience here we choose Boltzmann’s constant k and the particle mass m both equal to unity.) Soon William Hoover pointed out that Nosé’s approach fails for the simple harmonic oscillator [3]. Rather than generating the entire Gaussian canonical oscillator distribution, the Nosé-Hoover approach, which includes an additional friction coefficient ζ with distribution e −ζ 2/2 / √ 2π, generates only a modest fractal chaotic sea, filling a small percentage of the canonical (q, p, ζ) distribution. In the decade that followed this thermostatted work a handful of ergodic algorithms were developed in both three- and four-dimensional phase spaces. These new approaches generated the entire canonical distribution, without holes. The 2024 Snook Prize problem is to study the efficiency of several such algorithms, such as the five ergodic examples described here, so as to assess their relative usefulness in attaining the canonical steady state for the harmonic oscillator. The 2024 Prize rewarding the best assessment is United States $1000, half of it a gift from ourselves with the balance from the Poznan Supercomputing ´ and Networking Center.
Twórcy
  • Ruby Valley Research Institute 601 Highway Contract 60 Ruby Valley, Nevada 89833, USA
  • Ruby Valley Research Institute 601 Highway Contract 60 Ruby Valley, Nevada 89833, USA
Bibliografia
  • [1] S. Nosé, A Unified Formulation of the Constant Temperature Molecular Dynamics Method, The Journal of Chemical Physics 81, 511–519 (1984).
  • [2] S. Nosé, Constant Temperature Molecular Dynamics Methods, Progress in Theoretical Physics Supplement 103, 1–46 (1991).
  • [3] Wm.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Physical Review A 31, 1695–1697 (1985).
  • [4] H.A. Posch, W.G. Hoover, F.J. Vesely, Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos, Physical Review A 33, 4253–4265 (1986).
  • [5] W.G. Hoover, J.C. Sprott, C.G. Hoover, Adaptive Runge-Kutta Integration for Stiff Systems: Comparing Nosé and Nosé-Hoover Dynamics for the Harmonic Oscillator, American Journal of Physics 84, 786–794 (2016).
  • [6] H.A. Posch, W.G. Hoover, Time-Reversible Dissipative Attractors in Three and Four Phase-Space Dimensions, Physical Review E 55, 6803–6810 (1997).
  • [7] P.K. Patra, W.G. Hoover, C.G. Hoover, J.C. Sprott, The Equivalence of Dissipation from Gibbs’ Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators, International Journal of Bifurcation and Chaos 26, 1650089-1–11 (2016).
  • [8] D. Tapias, A. Bravetti, D. Sanders, Ergodicity of One-Dimensional Systems Coupled to the Logistic Thermostat, Computational Methods in Science and Technology 23, 11–18 (2017).
  • [9] J.C. Sprott, Ergodicity of One-Dimensional Oscillators with a Signum Thermostat, Computational Methods in Science and Technology 24, 169–176 (2018).
  • [10] W.G. Hoover, B.L. Holian, Kinetic Moments Method for the Canonical Ensemble Distribution, Physics Letters A 211, 253–257 (1996).
  • [11] A. Bulgac, D. Kusnezov, Canonical Ensemble Averages from Pseudomicrocanonical Dynamics, Physical Review A 42, 5045–5048(R) (1990).
  • [12] D. Kusnezov, A. Bulgac, W. Bauer, Canonical Ensembles from Chaos, Annals of Physics (New York) 204, 155–185 (1990).
  • [13] N.Ju, A. Bulgac, Finite-Temperature Properties of Sodium Clusters, Physical Review B 48, 2721–2732 (1993).
  • [14] D. Kusnezov, A. Bulgac, Canonical Ensembles from Chaos II: Constrained Dynamical Systems, Annals of Physics (New York) 214, 180–218 (1992).
  • [15] G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover Chains; the Canonical Ensemble via Continuous Dynamics, The Journal of Chemical Physics 97, 2635–2643 (1992).
  • [16] W.G. Hoover, C.G. Hoover, K.P. Travis, Information Dimensions of Simple Four-Dimensional Flows, Computational Methods in Science and Technology 29, 21–26 (2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0a4873-50ab-432c-a33e-234ace6a2db8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.