Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
Artificial intelligence operated with machine learning was performed to optimize the amount of metalloid elements (Si, B, and P) subjected to be added to a Fe-based amorphous alloy for enhancement of soft magnetic properties. The effect of metalloid elements on magnetic properties was investigated through correlation analysis. Si and P were investigated as elements that affect saturation magnetization while B was investigated as an element that affect coercivity. The coefficient of determination R2 (coefficient of determination) obtained from regression analysis by learning with the Random Forest Algorithm (RFR) was 0.95 In particular, the R2 value measured after including phase information of the Fe-Si-B-P ribbon increased to 0.98. The optimal range of metalloid addition was predicted through correlation analysis method and machine learning.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1539--1542
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wzory
Twórcy
autor
- Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
autor
- Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
autor
- Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
autor
- Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
autor
- R&D Center of Youngin Electronic, Youngin 1033, Korea
autor
- R&D Center of Youngin Electronic, Youngin 1033, Korea
autor
- Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju 54896, Korea
autor
- Smart Liquid Processing R&D Department of Korea Institute of Industrial Technology, Incheon 21999, Korea
Bibliografia
- [1] J.H. Jeon, N. Seo, H.J. Kim, M.H. Lee, H.K. Lim, S.B. Son, S.J. Lee, Metals 11, 729 (2021).
- [2] J.H.N. Seo, S.B. Son, S.J. Lee, M. Jung, Metals 11, 1159 (2021).
- [3] A. Inoue, T. Zhang, A. Takeuchi, Appl. Phys Letters 71, 105 (1997).
- [4] F.E. Luborsky, Handbook of Ferromagnetic Materials 1, 451-529 (1980).
- [5] C. Suryanarayana, A. Inoue, Bulk Metallic Glass 12, 55, 469 (2011).
- [6] B.L. Shen, M. Akiba, A. Inoue, Appl. Phys Letters 88, 131907 (2006).
- [7] Z. Jie, A. Julian Morris, Neural Network 11.1 65-80 (1998).
- [8] I.M. Monirul, K. Murase, Neural Network 14.9, 1265-1278 (2001).
- [9] B.L. Shen, M. Akiba, A. Inoue, Appl. Phys Letters 88, 131907 (2006).
- [10] M. Mitera, M. Naka, T. Masumoto, N. Kazama, K. Watanabe, Physica Status Solids (a) 49, K163-K165 (1978).
- [11] B. Shen, A. Inoue, Materials Transactions 43, 1235-1239 (2002).
- [12] M. Zou, S. Meng, Q. Li, H. Li, C. Chang, Y. Sun, Intermetallics 83, 83-86 (2017).
- [13] K. Fazil, International Journal of Electrical Powder & Energy System 67, 431-438 (2015).
- [14] W. Wen, Z. Hao, X. Yang, Neurocomputing 71, 3096-3103 (2008).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Identyfikator YADDA
bwmeta1.element.baztech-cd086fe9-5d9c-4a72-8f3d-02a4ba894062