PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of an ultra-high dose rate (FLASH) proton beam for the 3D cancer cell model - a proof of concept

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultra-high dose rate (FLASH) proton radiotherapy is a promising treatment method for cancer patients. In our research, we want to compare the FLASH method with a conventional radiation method to show what effect they have on the biochemical structure of the tumour (3D model - spheroids) and the secretion of extracellular vesicles (EVs) and their cargo. The use of a modern method of creating spheroids will enable us to create conditions that are better able to mimic the tumour microenvironment.
Rocznik
Strony
31--34
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
  • Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
  • Centre for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Matuszak N, Suchorska WM, Milecki P, Kruszyna-Mochalska M, Misiarz A, Pracz J, et al. FLASH Radiotherapy: an emerging approach in radiation therapy. Rep Pract Oncol Radiother 2022;27(2):343-51.
  • 2. Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. Prog. Part. Nucl. Phys. 2023;131:104046.
  • 3. Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol. 2022;19(12):791-803.
  • 4. Gao Y, Liu R, Chang CW, Charyyev S, Zhou J, Bradley JD, et al. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J. Appl. Clin. Med. Phys. 2022;23(10):e13790.
  • 5. Lin B., Gao F., Yang Y, Wu D, Zhang T, Feng G, et al. FLASH Radiotherapy: History and Future. Front Oncol. 2021;11:644400. doi: 10.3389/ fonc.2021.644400.
  • 6. Lang K. Towards high sensitivity and high-resolution PET scanners: imaging-guided proton therapy and total body imaging. Bio-Algorithms and Med-Systems 2022;18:96.
  • 7. Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Kaye W, et al. The first PET glimpse of a proton FLASH beam. Phys. Med. Biol. 2023;68:125001.
  • 8. Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys 2023;33(1):22-34. doi: https://doi.org/10.1016/j.zemedi.2022.11.001.
  • 9. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • 10. Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms and Med-Systems, 2021; 17(4): 311-319.
  • 11. Bass SD, Mariazzi S, Moskal P, Stępień E. Positronium physics and biomedical applications. Rev. Mod. Phys. 2023;95:021002.
  • 12. https://clinicaltrials.gov/ClinicalTrials.gov [Internet ]. Identifier: NCT04592887. Available from: https://clinicaltrials.gov.
  • 13. Mascia AE, Daugherty EC, Zhang Y, Lee E, Xiao Z, Sertorio M, et al. Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA Oncol 2023;9(1):62-9.
  • 14. https://www.journalonko.de/studien/details/lance-nct05724875 [Internet]. FLASH Radiotherapy for Skin Cancer [cited 2023 Nov 11]. Available from: https://www.journalonko.de/studien/details/lance-nct05724875.
  • 15. Fuji H, Yoshikawa S, Kasami M. Murayama S, Onitsuka T, Kashiwagi H, et al. High-dose proton beam therapy for sinonasal mucosal malignant melanoma. Radiat Oncol 2014;9:162. https://doi.org/10.1186/1748-717X-9-162.
  • 16. Karimi H, Moskal P, Żak A, Stępień EŁ. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep 2023;13(1):7648.
  • 17. Jasińska-Konior K, Pochylczuk K, Czajka E, Michalik M, Romanowska- -Dixon B, Swakoń J, et al. Proton beam irradiation inhibits the migration of melanoma cells. PLoS One 2017;12(10):e0186002.
  • 18. Jasińska-Konior K, Wiecheć O, Sarna M, Panek A, Swakoń J, Michalik M, et al. Increased elasticity of melanoma cells after low-LET proton beam due to actin cytoskeleton rearrangements. Sci Rep 2019;9(1):7008.
  • 19. Kędracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, et al. Proteomic analysis of proton beam irradiated human melanoma cells. PloS One 2014; 9(1):e84621.
  • 20. Zaborowski MP, Balaj L, Breakefield XO, Lai CP-K. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience. 2015;65:783-97.
  • 21. Li Z, Ye L, Wang L, Quan R, Zhou Y, Li X. Identification of miRNA signatures in serum exosomes as a potential biomarker after radiotherapy treatment in glioma patients. Ann Diagn Pathol. 2020;44:151436.
  • 22. de Araujo Farias V, O’Valle F, Serrano-Saenz S, Anderson P, Andrés E, López-Peñalver J, et al. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer 2018;17:122. https://doi.org/10.1186/s12943- 018-0867-0.
  • 23. Mrowczynski OD, Madhankumar AB, Sundstrom JM, Zhao Y, Kawasawa YI, Slagle-Webb B, et al. Exosomes impact survival to radiation exposure in cell line models of nervous system cancer. Oncotarget. 2018;9(90):36083-101.
  • 24. Sørensen BS, Horsman MR. Tumor Hypoxia. Impact on Radiation Therapy and Molecular Pathways. Front Oncol. 2020;10:562.
  • 25. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck - A systematic review and meta-analysis. Radiother Oncol. 2011;100:22-32.
  • 26. Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. JNCI 2001;93:266-76.
  • 27. Moon EJ, Petersson K, Olcina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int. J. Radiat. Biol. 2022;98(3):439-51.
  • 28. Hornsey S, Bewley DK. Hypoxia in Mouse Intestine Induced by Electron Irradiation At High Dose-Rates. Int J Radiat Biol 1971;19(5):479-83.
  • 29. Berry RJ, Stedeford JBH. Reproductive Survival of Mammalian Cells After Irradiation At Ultra-High Dose-Rates: Further Observations and Their Importance for Radiotherapy. Br J Radiol 1972;45(531):171-7.
  • 30. Field SB, Bewley DK. Effects of Dose-Rate on the Radiation Response of Rat Skin. Int J Radiat Biol Related Stud Phys Chem Med 1974;26(3):259-267.17.
  • 31. Weiss H, Epp ER, Heslin JM, Ling CC, Santomasso A. Oxygen Depletion in Cells Irradiated At Ultra-High Dose-Rates and At Conventional Dose-Rates. Int J Radiat Biol Related Stud Phys Chem Med 1974;26(1):17-29.
  • 32. Michaels HB, Epp ER, Ling CC, Peterson EC. Oxygen Sensitization of CHO Cells At Ultrahigh Dose Rates: Prelude to Oxygen Diffusion Studies. Radiat Res 1979;76(3):510-21.
  • 33. Bourhis J, Montay-Gruel P, Gonçalves Jorge P, Bailat C, Petit B, Ollivier J, et al. Clinical Translation of FLASH Radiotherapy: Why and How? Radiother Oncol 2019;139:11-7. doi: 10.1016/j.radonc.2019.04.008.
  • 34. Wang M-Y, Cheng J-L, Han Y-H, Li Y-L, Dai J-P, Shi D-P. Measurement of tumor size in adult glioblastoma: Classical cross-sectional criteria on 2D MRI or volumetric criteria on high resolution 3D MRI? Eur. J. Radiol. 2012;81(9):2370-4.
  • 35. Montay-Gruel P, Acharya MM, Gonçalves Jorge P, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clin Cancer Res. 2021 Feb 1;27(3):775-84. doi: 10.1158/1078-0432.CCR20-0894. Epub 2020 Oct 15. PMID: 33060122; PMCID: PMC7854480.
  • 36. Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. 2020. Lipid droplets in prostate cancer cells and effect of irradiation studied by Raman microspectroscopy. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2020;1865(9):158753.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cd0108dc-2457-4795-9c8a-b702838a65fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.