PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of transport system operational reliability a Markov approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The workability of a transport system is associated with performance and operational reliability. Operational reliability provides a measure of the probability that a transport system will realize transport process as intended. Performance reliability is an adequacy measure of transport process realization under specific environmental and traffic conditions. Transport system can be modelled as repairable, multistate, non-homogenous rectangular or dendrite system. This article provides the Markov and semi Markov models for estimation of the operational and performance reliability of city transport system. The system is semi homogenous it means that serial subsystems have the same reliability function. The reliability of any serial subsystem is exponential. The distribution of the repair time is any probability distribution. In case where the probability distribution of the repair time is exponential, the Markov process is used to construct simulation model. The simulation model was applied at Microsoft Excel. Many stochastic models in engineering, logistic and even finance or insurance are setup in a spreadsheet for simulation. The semi Markov model of the multistate reliability of repaired system is applied to the street system. The embedded Markov chain was used to count stationary probabilities. The possibility of application of the results is illustrated by an example for the systems with rectangular or dendrite shaped accordingly, consist of three types of elements.
Twórcy
  • Gdynia Maritime University Department of Transport and Logistics Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 5586838
  • Gdynia Maritime University Department of Transport and Logistics Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 5586838
Bibliografia
  • [1] Ionescu, D. C., Limnios, N., (eds), Statistical and Probabilistic Models in Reliability, pp. 153-183, Birkhauser, Boston 1998.
  • [2] Guan, Y., Li, S. E., Duan, J., Wang, W., Cheng, B., Markov probabilistic decision making of self-driving cars in highway with random traffic flow: a simulation study, Journal of Intelligent and Connected Vehicles, 1, 10.1108/JICV-01-2018-0003, 2018.
  • [3] Korolyuk, V. S., Turbin, A. F., Semi-Markov Processes and Their Applications, Naukova Dumka, in Russian, Kiev 1976.
  • [4] Korolyuk, V. S., Korolyuk, V. V., Stochastic Models of Systems, Kluver Academic Publishers, 1999.
  • [5] Chryssaphinou, O., Limnios, N., Malefaki, S., Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis, Reliability, IEEE Transactions, No. 60, 80-87, 10.1109/ TR.2010.2104210, 2011.
  • [6] Restel, F. J., Reliability and safety models of transportation systems – A literature review, PSAM 2014 – Probabilistic Safety Assessment and Management, 2014.
  • [7] Smolarek, L., The reliability models of large scale rectangular Weibull multistate systems, Proc. ESREL’99, Safety and Reliability, Vol. 1999, pp. 85-91, 1999.
  • [8] Smolarek, L., A Semi Markovian Model of Multistate Dendrite System, Mathematical Methods in Reliability, Statistique Mathematique et ses Applications, Bordeaux 2000, Vol. 2, pp. 973-977, France 2000.
  • [9] Takacs, L., Introduction to the theory of queues, Oxford University Press, Oxford 1962.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccf28520-1189-4703-a44d-590c7dfecac1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.